Trong không gian Oxyz, cho ba điểm A ( 1;2;1 ), B ( 3;-1;1 ) và C ( -1;-1;1 ) . Gọi là mặt cầu có tâm A, bán kính bằng 2, và là hai mặt cầu có tâm lần lượt là B, C và bán kính đều bằng 1. Hỏi có bao nhiêu mặt phẳng tiếp xúc với cả ba mặt cầu
A. 5
B. 7
C. 6
D. 8
Ta dễ thấy ba điểm A, B, C thuộc mặt phẳng , 3 mặt cầu là ở ngoài nhau. Mỗi mặt phẳng tiếp xúc với hai mặt cầu thì sẽ có hai tình huống.
1. Cả 3 mặt cầu ở cùng một nửa không gian chia bởi mặt phẳng tiếp xúc. Có 2 mặt phẳng như vậy.
2. Mặt phẳng tiếp xúc chia 2 mặt cầu về một phía và phía còn lại chứa mặt cầu kia. Có 4 mặt phẳng tiếp xúc chia mặt cầu lớn và mặt cầu nhỏ ở cùng một bên. Có một mặt phẳng tiếp xúc chia 2 mặt cầu nhỏ về một bên (ở đây do R + r + d ( A, BC ) nên mới tồn tại 1 mặt phẳng tiếp xúc theo yêu cầu, nếu R + r + d > d ( A, BC ) thì sẽ tồn tại 2 mặt phẳng tiếp xúc)
Đáp án cần chọn là B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian Oxyz, cho điểm A ( 3;-1;1 ) . Hình chiếu vuông góc của A trên mặt phẳng (Oyz) là điểm
Xếp ngẫu nhiên 10 học sinh gồm 2 học sinh lớp 12A, 3 học sinh lớp 12B và 5 học sinh lớp 12C thành một hàng ngang. Xác suất để trong 10 học sinh trên không có 2 học sinh cùng lớp đứng cạnh nhau bằng
Trong không gian Oxyz, cho ba điểm M ( 2;0;0 ), N ( 0;-1;0 ), P ( 0;0;2 ) . Mặt phẳng (MNP) có phương trình là
Trong không gian Oxyz, cho hai đường thẳng ; và mặt phẳng (P): x + 2y + 3z - 5 = 0. Đường thẳng vuông góc với (P), cắt có phương trình là
Tổng giá trị m, n để đường thẳng nằm trong mặt phẳng
( P ): ( m - 1 )x + 2y - 4z + n - 9 = 0 là:
Cho hai hình vuông ABCD và ABEF có cạnh bằng 1, lần lượt nằm trên hai mặt phẳng vuông góc với nhau. Gọi S là điểm đối xứng với B qua đường thẳng DE. Thể tích của khối đa diện ABCDSEF bằng
Thể tích của khối chóp có chiều cao bằng h và diện tích đáy bằng B là
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA = OB = OC. Gọi M là trung điểm của BC (tham khảo hình vẽ bên). Góc giữa hai đường thẳng OM và AB bằng
Có bao nhiêu giá trị nguyên của tham số m để hàm số có 7 điểm cực trị?
Cho (H) là hình phẳng giới hạn bởi parabol , cung tròn có phương trình (với ) và trục hoành (phần tô đậm trong hình vẽ). Diện tích của (H) bằng