Giả sử S=aln(bc)-1 là diện tích hình phẳng giới hạn bởi đồ thị hàm số y=x+1x-2 với các trục tọa độ. Hỏi mệnh đề nào là đúng?
A. a + b + c = 8
B. a > b
C. a - b + c = 1
D. a + 2b - 9 = 0
Đồ thị của hàm số đã cho cắt trục hoành tại điểm có tọa độ ( 1;0 ). Khi đó
S=∫0-1|x+1x-2|dx=|∫0-1x+1x-2dx|=|∫0-(1+3x-2)dx|=|(x+3ln(|x-2|)0-1)|=3ln(32)-1
Suy ra a = b = 3; c = 2
Vậy a + b + c = 8
Đáp án A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) = 5cosx - cos5x trên đoạn [-π3;π3]. Tính Mm
Viết phương trình parabol đi qua các điểm cực trị của đồ thị (C):y=x3-3x2+4 và tiếp xúc với đường thẳng y = -2x + 2
Để kiểm tra chất lượng sản phẩm từ công ty sữa, người ta gửi đến bộ phận kiểm nghiệm 5 hộp sữa cam, 4 hộp sữa dâu và 3 hộp sữa nho. Bộ phận kiểm nghiệm chọn ngẫu nhiên 3 hộp sữa để phân tích mẫu. Tính xác suất để 3 hộp sữa được chọn có cả 3 loại.
Tìm m để phương trình
3log27(2x2-x+2m-4m2)+log1√3(x2+mx-2m2)=0
có hai nghiệm x1;x2 sao cho x12+x22>1
Cho n∈ℕ;n>3 thỏa mãn phương trình
log4(n-3)+log4(n+9)=3
Tổng phần thực và phần ảo của số phức z=(1+i)n
Cho góc a thỏa mãn π<a<3π2 và sina - 2cosa = 1. Tính A = 2tana- cosa
Cho tập hợp A gồm n phần tử ( n > 4 ). Tìm n biết rằng trong số các phần tử của A có đúng 16n tập con có số phần tử là lẻ.
Tìm giá trị của m để đồ thị hàm số y=x3-3x2+2 có điểm cực đại và cực tiểu nằm về hai phía đối với đường tròn
(Cm):x2+y2-2mx-4my+5m2-1=0
Cho x; y; z; t ∈(14;1). Tìm giá trị nhỏ nhất của biểu thức:
P:=logx(y-14)+logy(z-14)+logz(t-14)+logt(x-14)
Cho khai triển nhị thức: (3√ab+b23√b2a3√a2)3n với
a≠0;b≠0. Hãy xác định hệ số của số hạng có tỉ số lũy thừa của a và b bằng -12 biết rằng
3C024-12C12n+C22n-14C32n+...+32n+1C2n2n=109235
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a; AD = b; AA' = c. Tính khoảng cách từ điểm A đến đường thẳng BD’
Tìm các nghiệm x∈(0;π2) của phương trình sau
4sin2(π-x2)-√3(π2-2x)=1+2cos2(x-3π4)