Thứ bảy, 22/02/2025
IMG-LOGO

Câu hỏi:

03/07/2024 86

Cho hình lăng trụ \[ABC.A'B'C'\]. Gọi M, N, P lần lượt là các điểm thuộc các cạnh \[AA'\], \[BB'\], \[CC'\] sao cho \[AM = 2MA'\], \[NB' = 2NB\], \[PC = PC'\]. Gọi \[{V_1}\], \[{V_2}\] lần lượt là thể tích của hai khối đa diện \[ABCMNP\] và \[A'B'C'MNP\]. Tính tỉ số \[\frac{{{V_1}}}{{{V_2}}}\].

A.\[\frac{{{V_1}}}{{{V_2}}} = 2\]

B.\[\frac{{{V_1}}}{{{V_2}}} = \frac{1}{2}\]

C.\[\frac{{{V_1}}}{{{V_2}}} = 1\]

Đáp án chính xác

D.\[\frac{{{V_1}}}{{{V_2}}} = \frac{2}{3}\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án C

Gọi Vlà thể tích khối lăng trụ \(ABC.A'B'C'\)

 Cho hình lăng trụ ABC/A'B'C'. Gọi M, N, P lần lượt là các điểm thuộc các  (ảnh 1)

Ta có \({V_1} = {V_{M.ABC}} + {V_{M.BCPN}}\).

\({V_{M.ABC}} = \frac{1}{3}d\left( {M;\left( {ABC} \right)} \right).{S_{ABC}} = \frac{1}{3}.\frac{2}{3}d\left( {A';\left( {ABC} \right)} \right).{S_{ABC}} = \frac{2}{9}V\).

\(\frac{{{V_{M.BCPN}}}}{{{V_{M.BCC'B'}}}} = \frac{{{S_{BCPN}}}}{{{S_{BCC'B'}}}} = \frac{{\frac{1}{2}d\left( {C;BB'} \right).\left( {BN + CP} \right)}}{{\frac{1}{2}d\left( {C;BB'} \right).\left( {BB' + CC'} \right)}} = \frac{{BN + CP}}{{BB' + CC'}} = \frac{{\frac{1}{3}BB' + \frac{1}{2}CC'}}{{BB' + CC'}}\)

\( \Rightarrow {V_{M.BCPN}} \Rightarrow \frac{5}{{12}}{V_{M.BCC'B'}} = \frac{5}{{12}}{V_{A.BCC'B'}} = \frac{5}{{12}}.2{V_{ABC'B'}} = \frac{5}{{12}}.2.\frac{1}{3}V = \frac{5}{{18}}V\)

\( \Rightarrow {V_1} = {V_{M.ABC}} + {V_{M.BCPN}} = \frac{2}{9}V + \frac{5}{{18}}V = \frac{1}{2}V \Rightarrow {V_2} = V - \frac{1}{2}V = \frac{1}{2}V \Rightarrow \frac{{{V_1}}}{{{V_2}}} = 1\).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính đạo hàm của hàm số \[y = {\log _2}\sqrt {2x + 3} .\]

Xem đáp án » 20/05/2022 210

Câu 2:

Cho (H) là hình phẳng giới hạn bởi parabol \[y = 2{x^2} - 1\] và nửa đường tròn có phương trình \[y = \sqrt {2 - {x^2}} \] (với \[ - \sqrt 2 \le x \le \sqrt 2 \]) (phần gạch chéo trong hình vẽ). Diện tích của (H) bằng

 Cho (H) là hình phẳng giới hạn bởi parabol y=2x^2 -1  và nửa đường tròn có  (ảnh 1)

Xem đáp án » 20/05/2022 210

Câu 3:

Cho hàm số f(x) liên tục trên đoạn \[\left[ {1;e} \right]\] thỏa mãn \[\int\limits_1^e {\frac{{f\left( x \right)}}{x}dx} = 1\] và \[f\left( e \right) = 1.\] Tính tích phân \[I = \int\limits_1^e {f'\left( x \right).\ln xdx} .\]

Xem đáp án » 20/05/2022 204

Câu 4:

Giới hạn \[\lim \frac{1}{{2019n + 2020}}\] bằng

Xem đáp án » 20/05/2022 199

Câu 5:

Biết phương trình \[{2^{x + 1}}{.5^x} = 15\] có nghiệm duy nhất dạng \[a\log 5 + b\log 3 + c\log 2\] với \[a,{\rm{ }}b,{\rm{ }}c \in \mathbb{Z}.\] Tính \[S = a + 2b + 3c.\]

Xem đáp án » 20/05/2022 178

Câu 6:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = {x^4} + 2\left( {{m^2} - 5m} \right){x^2} + 1\] có ba điểm cực trị?

Xem đáp án » 20/05/2022 177

Câu 7:

Có bao nhiêu số có 3 chữ số đôi một khác nhau và chia hết cho cả 2 và 5?

Xem đáp án » 20/05/2022 166

Câu 8:

Cho số z thỏa mãn \[\left| {z + 8 - 3i} \right| = \left| {z - i} \right|\] và \[\left| {z + 8 - 7i} \right| = \left| {z + 4 - i} \right|\]. Môđun của z bằng

Xem đáp án » 20/05/2022 166

Câu 9:

Chọn ngẫu nhiên một số tự nhiên A có 4 chữ số. Gọi N là số thỏa mãn \[{3^N} = A.\] Xác suất để N là số tự nhiên bằng

Xem đáp án » 20/05/2022 166

Câu 10:

Trong không gian Oxyz,cho điểm \[A\left( {2; - 1; - 2} \right)\] và đường thẳng d có phương trình \[\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{1}\]. Mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất. Mặt phẳng (P) vuông góc với mặt phẳng nào dưới đây?

Xem đáp án » 20/05/2022 161

Câu 11:

Cho hàm số bậc bốn \[y = f\left( x \right)\] có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình \[f\left( {\left| {2020x + m} \right|} \right) = 6m + 12\] có đúng 4 nghiệm thực phân biệt. Tính tổng tất cả các phần tử của S.

 Cho hàm số bậc bốn y=f(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả  (ảnh 1)

Xem đáp án » 20/05/2022 154

Câu 12:

Trong không gian Oxyz,cho mặt phẳng \[\left( P \right):x - 4y + 3z - 2 = 0.\] Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

Xem đáp án » 20/05/2022 136

Câu 13:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \[\widehat {BAC} = 60^\circ .\] Cạnh \[SC = \frac{{a\sqrt 6 }}{2}\] và vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng \[SA\] và \[BD\] bằng

Xem đáp án » 20/05/2022 134

Câu 14:

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ. Bất phương trình \[f\left( x \right) \le {3^x} - 2x + m\] có nghiệm với mọi \[x \in \left( { - \infty ;1} \right]\] khi và chỉ khi

 Cho hàm số y=f(x) có đạo hàm liên tục trên R và đồ thị hàm số y=f'(x) như hình vẽ.  (ảnh 1)

Xem đáp án » 20/05/2022 128

Câu 15:

Họ tất cả các nguyên hàm của hàm số \[f\left( x \right) = \cos 3x\] là

Xem đáp án » 20/05/2022 127

Câu hỏi mới nhất

Xem thêm »
Xem thêm »