Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng \[\left( P \right):2x - y + z - 6 = 0\] và đường thẳng \[d:\frac{{x + 2}}{2} = \frac{{y - 1}}{1} = \frac{{z - 1}}{{ - 1}}.\] Viết phương trình đường thẳng Δ cắt mặt phẳng (P) và đường thẳng d lần lượt tại M và N sao cho \[A\left( {3;5;2} \right)\] là trung điểm của cạnh MN.
A.\[\Delta :\frac{x}{3} = \frac{{y - 2}}{3} = \frac{z}{2}.\]
B.\[\Delta :\frac{{x - 2}}{1} = \frac{{y - 3}}{2} = \frac{{z + 1}}{3}.\]
C.\[\Delta :\frac{{x + 6}}{9} = \frac{{y + 1}}{6} = \frac{{z - 3}}{{ - 1}}.\]
D.\[\Delta :\frac{{x - 4}}{{ - 1}} = \frac{{y - 4}}{1} = \frac{{z + 2}}{4}.\]
Lời giải:
Chọn đáp án B
Ta có: \(d:\left\{ \begin{array}{l}x = - 2 + 2t\\y = 1 + t\\z = 1 - t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\) mà \(N \in d \Rightarrow N\left( {2t - 2;t + 1;1 - t} \right)\).
Bài ra \(A\left( {3;5;2} \right)\)là trung điểm của cạnh MN
\( \Rightarrow M\left( {6 - 2t + 2;10 - t - 1;4 - 1 + t} \right) \Rightarrow M\left( {8 - 2t;9 - t;t + 3} \right)\)
Mà \(M \in \left( P \right) \Rightarrow 2\left( {8 - 2t} \right) - \left( {9 - t} \right) + \left( {t + 3} \right) - 6 = 0 \Leftrightarrow - 2t + 4 = 0 \Leftrightarrow t = 2 \Rightarrow N\left( {2;3; - 1} \right).\)
Đường thẳng \(\Delta \) qua \(N\left( {2;3; - 1} \right)\) và nhận \(\overrightarrow {NA} = \left( {1;2;3} \right)\)là một VTCP
\( \Rightarrow \Delta :\frac{{x - 2}}{1} = \frac{{y - 3}}{2} = \frac{{z + 1}}{3}\).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian Oxyz,cho điểm M thuộc mặt cầu (S) có phương trình \[{\left( {x - 3} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\] và ba điểm \[A\left( {1;0;0} \right)\], \[B\left( {2;1;3} \right)\]; \[C\left( {0;2; - 3} \right)\]. Biết rằng quỹ tích các điểm M thỏa mãn \[M{A^2} + 2\overrightarrow {MB} .\overrightarrow {MC} = 8\] là một đường tròn cố định, tính bán kính r đường tròn này.
Cho hàm số \[f\left( x \right) = \frac{{{2^x}}}{{{2^x} + 2}}\]. Tính tổng \[f\left( 0 \right) + f\left( {\frac{1}{{10}}} \right) + ... + f\left( {\frac{{19}}{{10}}} \right)\].
Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \left| {{x^4} - 4{x^3} - 8{x^2} - m} \right|\] có đúng 7 điểm cực trị?
Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \frac{{m\sin x - 9}}{{\sin x - m}}\] đồng biến trên khoảng \[\left( {0;\frac{\pi }{2}} \right)\]?
Tính đạo hàm của hàm số \[y = {\log _{\frac{2}{3}}}\sqrt {{x^2} + 1} .\]
Biết rằng \[\int\limits_1^2 {x{{\left( {x - 1} \right)}^n}dx} = \frac{{27}}{{182}},\] với \[n \in {\mathbb{N}^*}.\] Mệnh đề nào dưới đây là đúng?
Trong không gian Oxyz,cho hai vectơ \[\vec u = \left( {1;0;2} \right)\] và \[\vec v = \left( { - 1;2;0} \right).\] Tính \[P = \cos \left( {\vec u;\vec v} \right).\]
Cho khối chóp S.ABCcó hai điểm \[M,{\rm{ }}N\] lần lượt thuộc hai cạnh \[SA,{\rm{ }}SB\] sao cho \[MA = 2MS,{\rm{ }}NS = 2NB.\] Mặt phẳng \[\left( \alpha \right)\] qua hai điểm M, N và song song với SC chia khối chóp thành hai khối đa diện. Tính tỉ số thể tích t của hai khối đa diện đó, biết \[t < 1.\]
Cho hai số phức \[{z_1} = 1 + 2i,{\rm{ }}{z_2} = 2 - 3i.\] Số phức \[w = {z_1} - {z_2}\] có phần ảo bằng
Cho hàm số f(x) liên tục trên \[\mathbb{R}\] và có đồ thị (C) như hình vẽ. Diện tích S của hình phẳng giới hạn bởi các đường \[y = f\left( x \right),{\rm{ }}y = 0,{\rm{ }}x = - 1,{\rm{ }}x = 2\] được tính theo công thức?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Tam giác SABvuông cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy. Côsin của góc giữa mặt phẳng (SCD) và (ABCD) bằng