Thứ năm, 15/05/2025
IMG-LOGO

Câu hỏi:

18/07/2024 1,100

Bên trong một hồ bơi, người ta dự định thiết kế hai bể sục nửa hình tròn bằng nhau và một bể sục hình tròn (H.7.15a) để người bơi có thể ngồi tựa lưng vào thành các bể sục thư giãn. Hãy tìm bán kính của các bể sục để tổng chu vi của ba bể là 32 m mà tổng diện tích (chiếm hồ bơi) là nhỏ nhất. Trong tính toán, lấy π = 3,14, độ dài tính theo mét và làm tròn tới chữ số thập phân thứ hai.
Media VietJack

 Xem lời giải  Xem lý thuyết

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Gọi bán kính của bể hình tròn và bể nửa hình tròn tương ứng là x, y (m) (x, y > 0).

Chu vi của bể hình tròn là: 2πx = 2 . 3,14 . x = 6,28x (m).

Vì hai bể còn lại là hai bể có dạng nửa hình tròn bằng nhau nên tổng chu vi của hai bể này bằng tổng chu vi của đường tròn bán kính y (m) với 2 lần độ dài đường kính của đường tròn đó, do đó chu vi của hai bể nửa hình tròn là:

2πy + 2 . 2y = 2 . 3,14 . y + 4y = 10,28y (m).

Tổng chu vi của ba bể là 32 m nên ta có: 6,28x + 10,28y = 32 hay 1,57x + 2,57y – 8 = 0.

Diện tích của bể hình tròn là: πx2 = 3,14x2 (m2).

Diện tích của hai bể nửa hình tròn là: πy2 = 3,14y2 (m2).

Gọi tổng diện tích của ba bể sục là S (m2). Khi đó ta có:

3,14x2 + 3,14y2 = S hay x2 + y2 = \(\frac{S}{{3,14}}\).

Trong mặt phẳng tọa độ Oxy, xét đường tròn (C): x2 + y2 = \(\frac{S}{{3,14}}\) có tâm O(0; 0), bán kính R = \(\sqrt {\frac{S}{{3,14}}} \) và đường thẳng ∆: 1,57x + 2,57y – 8 = 0. Khi đó bài toán được chuyển thành: Tìm R nhỏ nhất để (C) và ∆ ít nhất một điểm chung, với hoành độ và tung độ đều là các số dương.

Media VietJack

Để (C) và ∆ có ít nhất một điểm chung thì khoảng cách từ tâm O của (C) tới ∆ phải nhỏ hơn hoặc bằng bán kính R nên ta có: d(O, ∆) ≤ R.

\( \Leftrightarrow \frac{{\left| {1,57.0 + 2,57.0 - 8} \right|}}{{\sqrt {{{\left( {1,57} \right)}^2} + {{\left( {2,57} \right)}^2}} }} \le \sqrt {\frac{S}{{3,14}}} \)

\( \Leftrightarrow 2,66 \le \sqrt {\frac{S}{{3,14}}} \)\( \Leftrightarrow \frac{S}{{3,14}} \ge 7,0756\)\( \Leftrightarrow S \ge 22,22\).

Giá trị nhỏ nhất của S là 22,22 m2, khi đó x2 + y2 = 7,0756          (*).

Từ 1,57x + 2,57y – 8 = 0 x = \(\frac{{8 - 2,57y}}{{1,57}}\) thay vào (*) ta được:

\({\left( {\frac{{8 - 2,57y}}{{1,57}}} \right)^2} + {y^2} = 7,0756\)

(8 – 2,57y)2 + (1,57)2y2 = 17,44

9,0698y2 – 41,12y + 46,56 = 0

y ≈ 2,34 hoặc y ≈ 2,2.

Với y ≈ 2,34 suy ra x = \(\frac{{8 - 2,57.2,34}}{{1,57}}\) ≈ 1,27.

Với y ≈ 2,2 suy ra x = \(\frac{{8 - 2,57.2,2}}{{1,57}}\) ≈ 1,45.

Vậy bán kính bể sục hình tròn là 1,27 m thì bể sục nửa hình tròn là 2,34 m hoặc bán kính của bể sục hình tròn là 1,45 m thì bể sục nửa hình tròn là 2,2 thì thỏa mãn yêu cầu bài toán.

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chuyển động của một vật thể trong khoảng thời gian 180 phút được thể hiện trong mặt phẳng tọa độ. Theo đó, tại thời điểm t (0 ≤ t ≤ 180) vật thể ở vị trí có tọa độ (2 + sint°; 4 + cost°).

a) Tìm vị trí ban đầu và vị trí kết thúc của vật thể.

b) Tìm quỹ đạo chuyển động của vật thể.

Xem đáp án » 30/06/2022 2,245

Câu 2:

Trong mặt phẳng tọa độ, cho tam giác ABC, với A(6; – 2), B(4; 2), C(5; –5). Viết phương trình đường tròn ngoại tiếp tam giác đó.

Xem đáp án » 30/06/2022 1,176

Câu 3:

Trên mặt phẳng tọa độ Oxy, một vật chuyển động nhanh trên đường tròn có phương trình x2 + y2 = 25. Khi tới vị trí M(3; 4) thì vật bị văng khỏi quỹ đạo tròn và ngày sau đó, trong một khoảng thời gian ngắn bay theo hướng tiếp tuyến của đường tròn. Hỏi trong khoảng thời gian ngắn ngay sau khi văng, vật chuyển động trên đường thẳng nào ?

Xem đáp án » 30/06/2022 1,126

Câu 4:

Viết phương trình của đường tròn trong mỗi trường hợp sau:

a) Có tâm I(– 2; 5) và bán kính R = 7;

b) Có tâm I(1; – 2) và đi qua điểm A(– 2; 2);

c) Có đường kính AB, với A(– 1; – 3), B(– 3; 5);

d) Có tâm I(1; 3) và tiếp xúc với đường thẳng x + 2y + 3 = 0.

Xem đáp án » 30/06/2022 195

Câu 5:

Viết phương trình đường tròn (C) đi qua ba điểm M(4; – 5), N(2; – 1), P(3; – 8).

Xem đáp án » 30/06/2022 163

Câu 6:

Hãy cho biết phương trình nào dưới đây là phương trình của một đường tròn và tìm tâm, bán kính của đường tròn tương ứng.

a) x2 + y2 + xy + 4x – 2 = 0;

b) x2 + y2 – 2x – 4y + 5 = 0;

c) x2 + y2 + 6x – 8y + 1 = 0.

Xem đáp án » 30/06/2022 156

Câu 7:

A. Các câu hỏi trong bài

Trong mặt phẳng tọa độ Oxy, cho đường tròn (C), tâm I(a; b), bán kính R (H.7.13). Khi đó, một điểm M(x; y) thuộc đường tròn (C) khi và chỉ khi tọa độ của nó thỏa mãn điều kiện đại số nào?

Media VietJack

Xem đáp án » 30/06/2022 129

Câu 8:

Tìm tâm và bán kính của đường tròn (C): (x + 2)2 + (y – 4)2 = 7.

Xem đáp án » 30/06/2022 95

Câu 9:

Hãy cho biết phương trình nào dưới đây là phương trình của một đường tròn. Tìm tâm và bán kính của đường tròn đó.

a) x2 – y2 – 2x + 4y – 1 = 0;

b) x2 + y2 – 2x + 4y + 6 = 0;

c) x2 + y2 + 6x – 4y + 2 = 0.

Xem đáp án » 30/06/2022 89

Câu 10:

Cho đường tròn (C): x2 + y2 – 2x + 4y + 1 = 0. Viết phương trình tiếp tuyến ∆ của (C) tại điểm N(1; 0).

Xem đáp án » 30/06/2022 89

Câu 11:

Cho đường tròn (C): (x – 1)2 + (y – 2)2 = 25 và điểm M(4; – 2).

a) Chứng minh điểm M(4; – 2) thuộc đường tròn (C).

b) Xác định tâm và bán kính của (C).

c) Gọi ∆ là tiếp tuyến của (C) tại M. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng ∆ (H.7.16). Từ đó, viết phương trình đường thẳng ∆.

Media VietJack

Xem đáp án » 30/06/2022 73

Câu 12:

Cho đường tròn (C): x2 + y2 + 2x – 4y + 4 = 0. Viết phương trình tiếp tuyến d của (C) tại điểm M(0; 2).

Xem đáp án » 30/06/2022 70

Câu 13:

B. Bài tập

Tìm tâm và bán kính của đường tròn (x + 3)2 + (y – 3)2 = 36.

Xem đáp án » 30/06/2022 67

LÝ THUYẾT

Bài 21: Đường tròn trong mặt phẳng tọa độ