Cho a, b, c là các số thực dương khác 1. Hình vẽ bên là đồ thị của ba hàm số . Khẳng định nào sau đây là đúng?
A. a>b>c
B. a<b<c
C. c>a>b
D. a>c>b
Kẻ đường thẳng x = 1 cắt đồ thị các hàm số lần lượt tại các điểm có tung độ y=a, y=b, y=c.
Dựa vào đồ thị ta thấy ngay c>a>b
Đáp án cần chọn là: C.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai hàm số và . Xét các mệnh đề sau:
Đồ thị của hai hàm số f (x) và g (x) luôn cắt nhau tại một điểm.
Hàm số f(x)+g(x) đồng biến khi a > 1, nghịch biến khi 0<a<1
Đồ thị hàm số f (x) nhận trục Oy làm tiệm cận.
Chỉ có đồ thị hàm số f (x) có tiệm cận.
Hỏi có tất cả bao nhiêu mệnh đề đúng?
Cho hai hàm số với lần lượt có đồ thị là như hình bên. Mệnh đề nào đúng?
Cho hai hàm số và . Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng:
Biết hai hàm số và y=f(x) có đồ thị như hình vẽ đồng thời đồ thị của hai hàm số này đối xứng nhau qua đường thẳng d: y=-x. Tính
I. Hàm số mũ
1. Định nghĩa.
Cho số thực dương a khác 1.
Hàm số y = ax được gọi là hàm số mũ cơ số a.
Ví dụ 1. Các hàm số y = 2x; là các hàm số mũ.
2. Đạo hàm của hàm số mũ
Ta thừa nhận công thức:
– Định lí 1: Hàm số y = ex có đạo hàm tại mọi x và (ex)’ = ex.
– Chú ý: Công thức đạo hàm của hàm hợp đối với hàm số eu ( với u = u(x))
là (eu)’ = u’. eu.
– Định lí 2: Hàm số y = ax ( a > 0; a ≠ 1) có đạo hàm tại mọi x và: (ax)’ = ax. ln a
– Chú ý: Đối với hàm hợp y = au(x) ta có: (au)’ = au. lnu . u’
Ví dụ 2. Hàm số có đạo hàm là:
3. Khảo sát hàm số mũ y = ax ( a > 0 và a ≠ 1).
y = ax ; a > 1 |
y = ax ; 0 < a < 1 |
1. Tập xác định: R 2. Sự biến thiên y’ = ax.ln a > 0 với mọi x Giới hạn đặc biệt:
Tiệm cận: Trục Ox là tiệm cận ngang. 3. Bảng biến thiên: 4. Đồ thị
|
1. Tập xác định: R 2. Sự biến thiên y’ = ax.ln a < 0 với mọi x Giới hạn đặc biệt: Tiệm cận: Trục Ox là tiệm cận ngang. 3. Bảng biến thiên: 4. Đồ thị |
Bảng tóm tắt các tính chất của hàm số mũ y = ax ( a > 0; a ≠ 1).
Tập xác định |
|
Đạo hàm |
y’ = ax. lna |
Chiều biến thiên |
a > 1: Hàm số luôn đồng biến. 0 < a < 1: Hàm số luôn nghịch biến |
Tiệm cận |
Trục Ox là tiệm cận ngang |
Đồ thị |
Đi qua các điểm (0; 1) và (1; a), nằm phía trên trục hoành (y = ax > 0 ). |
II. Hàm số logarit
1. Định nghĩa.
Cho số thực dương a khác 1.
Hàm số y = logax được gọi là hàm số logarit cơ số a.
Ví dụ 3. Các hàm số y = log5 x; ; y = ln x là các hàm số logarit với cơ số lần lượt là và e.
2. Đạo hàm của hàm số logarit
– Định lí 3. Hàm số y = loga x (a > 0; a ≠ 1) có đạo hàm tại mọi x > 0 và
– Đặc biệt: .
– Chú ý:
Đối với hàm hợp y = logau(x); ta có:
– Ví dụ 4. Hàm số y = log4 (x2 + 2x – 7) có đạo hàm là:
.
3. Khảo sát hàm số logarit y = loga x ( a > 0; a ≠ 1).
y = loga x ; a > 1 |
y = logax ; 0 < a < 1 |
1. Tập xác định: 2. Sự biến thiên Giới hạn đặc biệt: Tiệm cận: Trục Oy là tiệm cận đứng. 3. Bảng biến thiên 4. Đồ thị |
1. Tập xác định: 2. Sự biến thiên Giới hạn đặc biệt: Tiệm cận: Trục Oy là tiệm cận đứng. 3. Bảng biến thiên 4. Đồ thị |
Bảng tóm tắt các tính chất của hàm số y = logax (a > 0; a ≠ 1 ).
Tập xác định |
|
Đạo hàm |
|
Chiều biến thiên |
a > 1: hàm số luôn đồng biến 0 < a< 1: hàm số luôn nghịch biến |
Tiệm cận |
Trục Oy là tiệm cận đứng |
Đồ thị |
Đi qua các điểm (1; 0) và (a; 1); nằm phía bên phải trục tung |
Nhận xét:
Đồ thị của các hàm số y = ax và y = loga x ( a > 0; a ≠ 1) đối xứng với nhau qua đường thẳng y = x.
Bảng đạo hàm của các hàm số lũy thừa, mũ, logarit.
Hàm sơ cấp |
Hàm hợp |
( ex)’ = ex ( ax)’ = ax. ln a |
( eu)’ = eu. u’ ( au)’ = au. ln a. u’ |
|