Số nghiệm nguyên của bất phương trình là
A. 9
B. 0
C. 11
D. 1
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Có bao nhiêu giá trị nguyên của tham số m để bất phương trình có 5 nghiệm nguyên?
Gọi S là tập hợp các số tự nhiên n có 4 chữ số thỏa mãn . Số phần tử của S là:
Gọi a là số thực lớn nhất để bất phương trình nghiệm đúng với mọi . Mệnh đề nào sau đây đúng?
I. Bất phương trình mũ.
1. Bất phương trình mũ cơ bản
Bất phương trình mũ cơ bản có dạng ax > b ( hoặc ax < b; ) với a > 0 và a ≠ 1.
Ta xét bất phương trình ax > b
+ Nếu b ≤ 0 tập nghiệm của bất phương trình là vì ax > 0 .
+ Nếu b > 0 thì tập nghiệm của bất phương trình tương đương .
Với a > 1, tập nghiệm của bất phương trình là x > logab.
Với 0 < a < 1, tập nghiệm của bất phương trình là x < logab.
– Ví dụ 1.
a) 5x > 125 x > log5125 x > 3.
b)
Kết luận. Tập nghiệm của bất phương trình ax > b được cho trong bảng sau:
ax > b |
Tập nghiệm |
|
a > 1 |
0 < a < 1 |
|
b ≤ 0 |
R |
R |
b > 0 |
2. Bất phương trình mũ đơn giản
– Ví dụ 2. Giải bất phương trình 3x + 2 < 27.
Lời giải:
Ta có: 27 = 33
Vì cơ số 3 > 1 nên x + 2 < 3
x < 1.
Vậy tập nghiệm của bất phương trình đã cho là x < 1.
II. Bất phương trình logarit
1. Bất phương trình logarit cơ bản
Bất phương trình logarit cơ bản có dạng loga x > b ( hoặc logax < 0; ) với a > 0; a ≠ 1.
Xét bất phương trình logax > b
+ Trường hợp a > 1 ta có: logax > bx > ab.
+ Trường hợp 0 < a < 1 ta có: logax > b0 < x < ab.
– Ví dụ 3.
a) log2x > 7x > 27.
b)
Kết luận: Nghiệm của bất phương trình logax > b được cho trong bảng sau:
logax > b |
a > 1 |
0 < a < 1 |
Nghiệm |
x > ab |
0 < x < ab |
2. Bất phương trình logarit đơn giản
– Ví dụ 4. Giải bất phương trình > .
Lời giải:
Điều kiện của bất phương trình:
Ta có:
Vì cơ số 3 > 1 nên: x2 + 2x > x + 2
x2 + x – 2 > 0
Kết hợp điều kiện, vậy x > 1.