Cho số phức z=1+i. Biết rằng tồn tại các số phức
(trong đó ) thỏa mãn .
Tính b-a.
A.
B.
C.
D.
Đáp án D
Đặt lần lượt là các điểm biểu thị cho các số phức
Vậy
Từ giả thiết cho ta tam giác MNP cân tại M có
(nhân chéo vế với vế của hai phương trình).
Tìm được Thay vào (1) thì thấy chỉ có thỏa mãn. Lúc này do
Do
Vậy
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho các số phức z, w thỏa mãn
Tìm giá trị lớn nhất của biểu thức
Cho w là số phức thay đổi thỏa mãn .
Trong mặt phẳng phức, các điểm biểu diễn số phức z=3w+1-2i chạy trên đường nào?
Cho số phức z thỏa mãn . Biết tập hợp các điểm biểu diễn số phức w xác định bởi là một đường tròn bán kính R. Tính R
Cho các số phức w,z thỏa mãn và 5w=(2+i)(z-4).
Giá trị lớn nhất của biểu thức bằng
Tập hợp tất cả các điểm biễu diễn các số phức z thõa mãn là đường tròn có tâm I và bán kính R lần lượt là
Có bao nhiêu số phức z thỏa mãn đồng thời hai điều kiện sau: và ?
Cho số phức z, biết rằng các điểm biễu diễn hình học của các số phức z, iz và z+iz tạo thành một tam giác có diện tích bằng 18. Modun của số phức bằng