Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

23/07/2024 184

Lập phương trình đường phân giác trong của góc A  của ΔABC biết A(2;0);B(4;1);C(1;2)

A.3x−y−6=0

Đáp án chính xác

B.x−y−16=0

C.−y−6=0

D.−x−7y−6=0

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

+ Cạnh AB đi qua hai điểm A,B nên phương trình cạnh AB:\[x - 2y - 2 = 0\]+ Cạnh AC đi qua hai điểm A,C nên phương trình cạnh \[AC:2x + y - 4 = 0\]+ Phương trình hai đường phân giác của góc A:

\(\frac{{x - 2y - 2}}{{\sqrt 5 }} = \pm \frac{{2x + y - 4}}{{\sqrt 5 }} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x + 3y - 2 = 0(d)}\\{3x - y - 6 = 0(d\prime )}\end{array}} \right.\)

+ Xét đường phân giác \[\left( d \right):x + 3y - 2 = 0\]

Thế tọa độ điểm B  vào vế trái của\[d:{t_1} = 4 + 3.1 - 2 = 5 >0\]

Thế tạo độ điểm C  vào vế trái của d: \[{t_2} = 1 + 3.2 - 2 = 5 >0\]

Vì\[{t_1}.{t_2} >0\] nên B  và C  nằm cùng phía đối với d⇒d là đường phân giác ngoài

Vậy đường phân giác trong của góc A  là: \[d':3x - y - 6 = 0\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC

Xem đáp án » 06/09/2022 513

Câu 2:

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;2), B(0;3) và C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

Xem đáp án » 06/09/2022 239

Câu 3:

Khoảng cách từ giao điểm của hai đường thẳng \[x - 3y + 4 = 0\] và \[2x + 3y - 1 = 0\;\]đến đường thẳng \[\Delta :3x + y + 4 = 0\;\] bằng:

Xem đáp án » 06/09/2022 226

Câu 4:

Trong mặt phẳng với hệ toạ độ Oxy,  cho tam giác ABC  có phương trình đường phân giác trong góc A  là d1:x+y+2=0,  phương trình đường cao vẽ từ B  là d2:2xy+1=0,   cạnh AB  đi qua M(1;−1).  Tìm phương trình cạnh AC.

Xem đáp án » 06/09/2022 218

Câu 5:

Trong mặt phẳng với hệ tọa độ Oxy, cho \[\Delta ABC\] cân có đáy là BC.BC.  Đỉnh A  có tọa độ là các số dương, hai điểm B  và C  nằm trên trục Ox,  phương trình cạnh AB: \[y = 3\sqrt 7 (x - 1)\] Biết chu vi của \[\Delta ABC\] bằng 18, tìm tọa độ các đỉnh A,B,C.

Xem đáp án » 06/09/2022 203

Câu 6:

Cho \[d:x + 3y - 6 = 0;d':3x + y + 2 = 0.\].   Lập phương trình hai đường phân giác của các góc tạo bởi d  và d′

Xem đáp án » 06/09/2022 198

Câu 7:

Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?

Xem đáp án » 06/09/2022 198

Câu 8:

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng đi qua hai điểm A(1;2), B(4;6), tìm tọa độ điểm M trên trục Oy sao cho diện tích \[\Delta MAB\] bằng 1.

Xem đáp án » 06/09/2022 197

Câu 9:

Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\]Viết PTĐT (d)  đi qua điểm M(1;2)  và  tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)

Xem đáp án » 06/09/2022 196

Câu 10:

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là \[2x - y + 3 = 02x - y + 3 = 0;\;\] và tọa độ một đỉnh là (2;3). Diện tích hình chữ nhật đó là: 

Xem đáp án » 06/09/2022 191

Câu 11:

Cho hai đường thẳng \[{d_1}:3x + 4y + 12 = 0\] và \[{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + at}\\{y = 1 - 2t}\end{array}} \right.\]. Tìm các giá trị của tham số a để d1 và d2 hợp với nhau một góc bằng 450.

Xem đáp án » 06/09/2022 185

Câu 12:

Tìm tất cả các giá trị của tham số m để khoảng cách từ điểm A(−1;2) đến đường thẳng \[\Delta :mx + y - m + 4 = 0\;\] bằng \[2\sqrt 5 \].

Xem đáp án » 06/09/2022 179

Câu 13:

Khoảng cách giữa \[{{\rm{\Delta }}_1}:3x + 4y = 12\] và \[{\Delta _2}:6x + 8y - 11 = 0\] là:

Xem đáp án » 06/09/2022 179

Câu 14:

Tính góc tạo bởi giữa hai đường thẳng \[{d_1}:6x - 5y + 15 = 0\] và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 10 - 6t}\\{y = 1 + 5t}\end{array}} \right.\).

Xem đáp án » 06/09/2022 177

Câu 15:

Cho đường thẳng \[{d_1}:x + 2y - 7 = 0\] và \[{d_2}:2x - 4y + 9 = 0\]. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.

Xem đáp án » 06/09/2022 171

Câu hỏi mới nhất

Xem thêm »
Xem thêm »