Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC
A.(0;0)
B.(1;0)
C.(2;0)
D. (3;0)
Phương trình đường thẳng BC là y=0, vì \[M \in BC\;\] nên gọi M(m;0).
Ta có:\[\overrightarrow {AM} = \left( {m - 2; - 3} \right)\] nên\[\vec n = \left( {3;m - 2} \right)\] là 1 VTPT của đường thẳng AM.
Phương trình đường thẳng AM là:
\[\begin{array}{*{20}{l}}{3\left( {x - 2} \right) + \left( {m - 2} \right)\left( {y - 3} \right) = 0}\\{ \Leftrightarrow 3x + \left( {m - 2} \right)y - 6 - 3m + 6 = 0}\\{ \Leftrightarrow 3x + \left( {m - 2} \right)y - 3m = 0}\end{array}\]
\[\begin{array}{*{20}{l}}{ \Rightarrow d\left( {B;AM} \right) = \frac{{\left| {15 - 3m} \right|}}{{\sqrt {9 + {{\left( {m - 2} \right)}^2}} }}}\\{\,\,\,\,\,\,d\left( {C;AM} \right) = \frac{{\left| { - 3 - 3m} \right|}}{{\sqrt {9 + {{\left( {m - 2} \right)}^2}} }}}\end{array}\]
Ta có:
\(\left\{ {\begin{array}{*{20}{c}}{{S_{\Delta MAB}} = \frac{1}{2}d(B;AM).AM}\\{{S_{\Delta MAC}} = \frac{1}{2}d(C;AM).AM}\end{array}} \right. \Rightarrow {S_{\Delta MAB}} = 2{S_{\Delta MAC}}\)
\[ \Leftrightarrow d(B;AM) = 2d(C;AM)\]
\[\frac{{|15 - 3m|}}{{\sqrt {9 + {{(m - 2)}^2}} }} = 2\frac{{| - 3 - 3m|}}{{\sqrt {9 + {{(m - 2)}^2}} }}\]
\[ \Leftrightarrow |15 - 3m| = 2| - 3 - 3m|\]
\(\left[ {\begin{array}{*{20}{c}}{15 - 3m = - 6 - 6m}\\{15 - 3m = 6 + 6m}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = - 7}\\{m = 1}\end{array}} \right.\)
Vậy M(1;0) hoặc M(−7;0)
Đáp án cần chọn là: B
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;2), B(0;3) và C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:
Khoảng cách từ giao điểm của hai đường thẳng \[x - 3y + 4 = 0\] và \[2x + 3y - 1 = 0\;\]đến đường thẳng \[\Delta :3x + y + 4 = 0\;\] bằng:
Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC có phương trình đường phân giác trong góc A là d1:x+y+2=0, phương trình đường cao vẽ từ B là d2:2x−y+1=0, cạnh AB đi qua M(1;−1). Tìm phương trình cạnh AC.
Trong mặt phẳng với hệ tọa độ Oxy, cho \[\Delta ABC\] cân có đáy là BC.BC. Đỉnh A có tọa độ là các số dương, hai điểm B và C nằm trên trục Ox, phương trình cạnh AB: \[y = 3\sqrt 7 (x - 1)\] Biết chu vi của \[\Delta ABC\] bằng 18, tìm tọa độ các đỉnh A,B,C.
Cho \[d:x + 3y - 6 = 0;d':3x + y + 2 = 0.\]. Lập phương trình hai đường phân giác của các góc tạo bởi d và d′
Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng đi qua hai điểm A(1;2), B(4;6), tìm tọa độ điểm M trên trục Oy sao cho diện tích \[\Delta MAB\] bằng 1.
Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\]. Viết PTĐT (d) đi qua điểm M(1;2) và tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)
Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là \[2x - y + 3 = 02x - y + 3 = 0;\;\] và tọa độ một đỉnh là (2;3). Diện tích hình chữ nhật đó là:
Cho hai đường thẳng \[{d_1}:3x + 4y + 12 = 0\] và \[{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + at}\\{y = 1 - 2t}\end{array}} \right.\]. Tìm các giá trị của tham số a để d1 và d2 hợp với nhau một góc bằng 450.
Lập phương trình đường phân giác trong của góc A của ΔABC biết A(2;0);B(4;1);C(1;2)
Tìm tất cả các giá trị của tham số m để khoảng cách từ điểm A(−1;2) đến đường thẳng \[\Delta :mx + y - m + 4 = 0\;\] bằng \[2\sqrt 5 \].
Khoảng cách giữa \[{{\rm{\Delta }}_1}:3x + 4y = 12\] và \[{\Delta _2}:6x + 8y - 11 = 0\] là:
Tính góc tạo bởi giữa hai đường thẳng \[{d_1}:6x - 5y + 15 = 0\] và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 10 - 6t}\\{y = 1 + 5t}\end{array}} \right.\).
Cho đường thẳng \[{d_1}:x + 2y - 7 = 0\] và \[{d_2}:2x - 4y + 9 = 0\]. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.