IMG-LOGO

Câu hỏi:

23/07/2024 213

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng đi qua hai điểm A(1;2), B(4;6), tìm tọa độ điểm M trên trục Oy sao cho diện tích \[\Delta MAB\] bằng 1.

A.(0;0) và (−1;0).

B.(0;0) và \[\left( {0;\frac{4}{3}} \right).\]

Đáp án chính xác

C.(0;−1) và \[\left( {0;\frac{4}{3}} \right)\]

D.\[\left( {0;\frac{2}{3}} \right)\] và \[\left( { - \frac{1}{2};0} \right)\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Gọi \[M\left( {0;m} \right) \in Oy;\,\,AB = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {6 - 2} \right)}^2}} = 5.\]

Có \[{S_{{\rm{\Delta }}MAB}} = \frac{1}{2}d\left( {M,AB} \right).AB \Leftrightarrow 1 = \frac{1}{2}.d\left( {M,AB} \right).5 \Leftrightarrow d\left( {M,AB} \right) = \frac{2}{5}\]

\[\overrightarrow {AB} = \left( {3;4} \right) \Rightarrow \vec n = \left( {4; - 3} \right)\] là 1 VTPT của  AB.

⇒ Phương trình AB: \[4\left( {x - 1} \right) - 3\left( {y - 2} \right) = 0 \Leftrightarrow 4x - 3y + 2 = 0\]\[ \Rightarrow d\left( {M,AB} \right) = \frac{{\left| { - 3m + 2} \right|}}{{\sqrt {{4^2} + {3^2}} }} \Leftrightarrow \frac{2}{5} = \frac{{\left| { - 3m + 2} \right|}}{5} \Leftrightarrow \left| { - 3m + 2} \right| = 2\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{ - 3m + 2 = 2}\\{ - 3m + 2 = - 2}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0 \Rightarrow M(0;0)}\\{m = \frac{4}{3} \Rightarrow M\left( {0;\frac{4}{3}} \right)}\end{array}} \right.\)

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC

Xem đáp án » 06/09/2022 543

Câu 2:

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;2), B(0;3) và C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

Xem đáp án » 06/09/2022 265

Câu 3:

Khoảng cách từ giao điểm của hai đường thẳng \[x - 3y + 4 = 0\] và \[2x + 3y - 1 = 0\;\]đến đường thẳng \[\Delta :3x + y + 4 = 0\;\] bằng:

Xem đáp án » 06/09/2022 239

Câu 4:

Trong mặt phẳng với hệ toạ độ Oxy,  cho tam giác ABC  có phương trình đường phân giác trong góc A  là d1:x+y+2=0,  phương trình đường cao vẽ từ B  là d2:2xy+1=0,   cạnh AB  đi qua M(1;−1).  Tìm phương trình cạnh AC.

Xem đáp án » 06/09/2022 237

Câu 5:

Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\]Viết PTĐT (d)  đi qua điểm M(1;2)  và  tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)

Xem đáp án » 06/09/2022 220

Câu 6:

Cho \[d:x + 3y - 6 = 0;d':3x + y + 2 = 0.\].   Lập phương trình hai đường phân giác của các góc tạo bởi d  và d′

Xem đáp án » 06/09/2022 219

Câu 7:

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là \[2x - y + 3 = 02x - y + 3 = 0;\;\] và tọa độ một đỉnh là (2;3). Diện tích hình chữ nhật đó là: 

Xem đáp án » 06/09/2022 218

Câu 8:

Trong mặt phẳng với hệ tọa độ Oxy, cho \[\Delta ABC\] cân có đáy là BC.BC.  Đỉnh A  có tọa độ là các số dương, hai điểm B  và C  nằm trên trục Ox,  phương trình cạnh AB: \[y = 3\sqrt 7 (x - 1)\] Biết chu vi của \[\Delta ABC\] bằng 18, tìm tọa độ các đỉnh A,B,C.

Xem đáp án » 06/09/2022 216

Câu 9:

Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?

Xem đáp án » 06/09/2022 211

Câu 10:

Cho hai đường thẳng \[{d_1}:3x + 4y + 12 = 0\] và \[{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + at}\\{y = 1 - 2t}\end{array}} \right.\]. Tìm các giá trị của tham số a để d1 và d2 hợp với nhau một góc bằng 450.

Xem đáp án » 06/09/2022 199

Câu 11:

Tìm tất cả các giá trị của tham số m để khoảng cách từ điểm A(−1;2) đến đường thẳng \[\Delta :mx + y - m + 4 = 0\;\] bằng \[2\sqrt 5 \].

Xem đáp án » 06/09/2022 199

Câu 12:

Tính góc tạo bởi giữa hai đường thẳng \[{d_1}:6x - 5y + 15 = 0\] và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 10 - 6t}\\{y = 1 + 5t}\end{array}} \right.\).

Xem đáp án » 06/09/2022 198

Câu 13:

Lập phương trình đường phân giác trong của góc A  của ΔABC biết A(2;0);B(4;1);C(1;2)

Xem đáp án » 06/09/2022 197

Câu 14:

Khoảng cách giữa \[{{\rm{\Delta }}_1}:3x + 4y = 12\] và \[{\Delta _2}:6x + 8y - 11 = 0\] là:

Xem đáp án » 06/09/2022 191

Câu 15:

Cho đường thẳng \[{d_1}:x + 2y - 7 = 0\] và \[{d_2}:2x - 4y + 9 = 0\]. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.

Xem đáp án » 06/09/2022 182

Câu hỏi mới nhất

Xem thêm »
Xem thêm »