Tính đạo hàm của hàm số \[f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 2018} \right)\] tại điểm x=0.
A.\[f'\left( 0 \right) = 0.\]
B. \[f'\left( 0 \right) = - 2018!.\]
C. \[f'\left( 0 \right) = 2018!.\]
D. \[f'\left( 0 \right) = 2018.\]
\[f\left( x \right) = x\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 2018} \right)\]
\[\begin{array}{*{20}{l}}{ \Rightarrow f'\left( x \right) = 1.\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 2018} \right) + x.1.\left( {x - 2} \right)...\left( {x - 2018} \right) + x\left( {x - 1} \right).1.\left( {x - 2} \right)...\left( {x - 2018} \right) + ... + }\\{x.\left( {x - 1} \right)\left( {x - 2} \right)...\left( {x - 2017} \right).1}\end{array}\]\[ \Rightarrow f'\left( 0 \right) = 1.\left( { - 1} \right)\left( { - 2} \right)...\left( { - 2018} \right) + 0 + 0 + ... + 0 = 1.2...2018.{( - 1)^{2018}} = 2018!\]
Đáp án cần chọn là: C
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai hàm số f(x) và g(x) có \[f\prime \left( 1 \right) = 3\;\] và g′(1)=1.Đạo hàm của hàm số \[f(x) - g(x)\;\] tại điểm x=1 bằng
Đạo hàm của hàm số \[y = x\left( {2x - 1} \right)\left( {3x + 2} \right){\left( {\sin x - \cos x} \right)^\prime }\]là:
Đạo hàm của hàm số \[y = \frac{1}{{{x^3}}} - \frac{1}{{{x^2}}}\] là
Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]
Cho hàm số \[y = \frac{3}{{1 - x}}\] thì x nhận các giá trị thuộc tập nào sau đây?
Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai
Đạo hàm của hàm số \[y = \frac{{ax + b}}{{cx + d}}\,\,\left( {ac \ne 0} \right)\] là: