Phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm số \[y = {x^3} - 3{x^2} + 1\] là:
A.y=−2x+1
B.y=2x−1
C. y=−2x−1
D. y=2x+1
Cách 1:
\[y' = 3{x^2} - 6x\]
\[y\prime = 0 \Leftrightarrow 3x(x - 2) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 0 \Rightarrow y = 1}\\{x = 2 \Rightarrow y = - 3}\end{array}} \right.\]
Từ đây suy ra hai điểm cực trị có tọa độ A(0,1) và B(2,−3).
Phương trình đường thẳng qua hai điểm A,B là\[\frac{{x - 0}}{{2 - 0}} = \frac{{y - 1}}{{ - 3 - 1}}\]
\[ \Leftrightarrow - 4x = 2\left( {y - 1} \right) \Leftrightarrow y = - 2x + 1.\]
Cách 2:
Ta có \[y' = 3{x^2} - 6x\]
Khi đó \[{x^3} - 3{x^2} + 1 = \left( {3{x^2} - 6x} \right)\left( {\frac{1}{3}x - \frac{1}{3}} \right) - 2x + 1\]
Vậy đường thẳng đi qua hai điểm cực trị của đồ thị hàm số là\[y = - 2x + 1\]Cách 3:
Bước 1:
\[y' = 3{x^2} - 6x;y'' = 6x - 6\]
Bước 2:
Bước 3: Ta được a=1 và b=-2
Vậy đường thẳng là: \[y = - 2x + 1\]
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Điều kiện để hàm số bậc ba không có cực trị là phương trình y′=0 có:
Cho hàm số \[y = f\left( x \right)\;\]có đạo hàm \[f\prime \left( x \right) = {x^2}({x^2} - 1).\] Điểm cực tiểu của hàm số \[y = f\left( x \right)\;\] là:
Hình vẽ dưới đây mô tả số người nhiễm Covid-19 đang được điều trị ở Việt Nam tính từ ngày 23/01/2020 đến ngày 13/02/2021.
Hỏi từ ngày 16/06/2020 đến ngày 27/01/2021, ngày nào Việt Nam có số người được điều trị Covid-19 nhiều nhất?
Cho các phát biểu sau:
1. Hàm số y=f(x) đạt cực đại tại \[{x_0}\] khi và chỉ khi đạo hàm đổi dấu từ dương sang âm qua \[{x_0}\].
2. Hàm số y=f(x) đạt cực trị tại \[{x_0}\] khi và chỉ khi \[{x_0}\] là nghiệm của đạo hàm.
3. Nếu \[f\prime (x0) = 0\;\] và \[f\prime \prime (x0) = 0\;\] thì \[{x_0}\] không phải là cực trị của hàm số y=f(x) đã cho.
4. Nếu f′(x0)=0 và \[f\prime \prime (xo) > 0\;\] thì hàm số đạt cực đại tại \[{x_0}\].
Các phát biểu đúng là:
Cho hàm số \[f\left( x \right) = a{x^3} + b{x^2} + cx + d\] (với \[a,b,c,d \in \mathbb{R}\;\] và \[a \ne 0\]) có đồ thị như hình vẽ. Số điểm cực trị của hàm số \[g(x) = f( - 2{x^2} + 4x)\;\] là
Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định sai:
Số điểm cực trị của đồ thị hàm số \[y = \frac{{x - 1}}{{2 - x}}\] là:
Cho hàm số y=f(x) có đạo hàm trên (a;b). Nếu \[f\prime (x)\;\] đổi dấu từ âm sang dương qua điểm \[{x_0}\] thuộc (a;b) thì
Cho hàm số f(x) có đạo hàm \[f\prime (x) = x(x - 1){(x + 4)^3},\forall x \in \mathbb{R}.\] Số điểm cực tiểu của hàm số đã cho là:
Cho hàm số \[y = \frac{{ - {x^2} + 3x + 6}}{{x + 2}}\], chọn kết luận đúng:
Giả sử \[y = f(x)\;\] có đạo hàm cấp hai trên (a;b). Nếu \(\left\{ {\begin{array}{*{20}{c}}{f'\left( {{x_0}} \right) = 0}\\{f''\left( {{x_0}} \right) > 0}\end{array}} \right.\) thì
Cho hàm số f(x) có đạo hàm \[f\prime \left( x \right) = {x^2}\left( {x + 2} \right)\left( {x - 3} \right).\] Điểm cực đại của hàm số \[g\left( x \right) = f({x^2} - 2x)\;\] là: