Thứ bảy, 23/11/2024
IMG-LOGO

Câu hỏi:

21/07/2024 189

Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[\left( {{3^{{x^2} - x}} - 9} \right)\left( {{2^{{x^2}}} - m} \right) \le 0\]có 5 nghiệm nguyên?

A.65021

B.65024

Đáp án chính xác

C.65022

D.65023

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

\[\left( {{3^{{x^2} - x}} - 9} \right)\left( {{2^{{x^2}}} - m} \right) \le 0\]

TH1: \(\left\{ {\begin{array}{*{20}{c}}{{3^{{x^2} - x}} - 9 \le 0\,\,\,\,\left( 1 \right)}\\{{2^{{x^2}}} - m \ge 0\,\,\,\,\left( 2 \right)}\end{array}} \right.\,\,\,\,\,\left( I \right)\)

\[\left( 1 \right) \Leftrightarrow {3^{{x^2} - x}} \le {3^2} \Leftrightarrow {x^2} - x \le 2 \Leftrightarrow - 1 \le x \le 2\]

⇒ Số nghiệm nguyên của bất phương trình (1) là  4 nghiệm, gồm \[\left\{ { - 1;0;1;2} \right\}\]

Như vậy hệ có tối đa 4 nghiệm nguyên, hay bất phương trình ban đầu cũng chỉ có tối đa 4 nghiệm nguyên (Loại).

TH2: \(\left\{ {\begin{array}{*{20}{c}}{{3^{{x^2} - x}} - 9 \ge 0\,\,\,\,\left( {1'} \right)}\\{{2^{{x^2}}} - m \le 0\,\,\,\,\left( {2'} \right)}\end{array}} \right.\,\,\,\,\,\left( {II} \right)\)

\[(1\prime ) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \ge 2}\\{x \le - 1}\end{array}} \right.\]

\[\left( {2'} \right) \Leftrightarrow {2^{{x^2}}} \le m \Leftrightarrow {x^2} \le {\log _2}m \Leftrightarrow - \sqrt {{{\log }_2}m} \le x \le \sqrt {{{\log }_2}m} \]

Có bao nhiêu giá trị nguyên của tham số m để bất phương trình (ảnh 1)

Để (II) có nghiệm thì\(\left\{ {\begin{array}{*{20}{c}}{ - \sqrt {lo{g_2}m} \le - 1}\\{\sqrt {lo{g_2}m} \ge 2}\end{array}} \right.\)

Mà bất phương trình ban đầu có 5 nghiệm nguyên nên các nghiệm đó bắt buộc phải là -3, -2, -1, 2, 3.

Do đó

\[3 \le \sqrt {{{\log }_2}m} < 4 \Leftrightarrow 9 \le {\log _2}m < 16 \Leftrightarrow 512 \le m < 65536\]

Vậy có\[65535 - 512 + 1 = 65024\]giá trị nguyên của m thỏa mãn yêu cầu bài toán. 

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tập nghiệm của bất phương trình \[{7^x} \ge 10 - 3x\]

Xem đáp án » 07/09/2022 234

Câu 2:

Cho hàm số y=f(x). Hàm số y=f′(x) có bảng biến thiên như sau:

Cho hàm số y=f(x). Hàm số y=f′(x) có bảng biến thiên như sau:Bất phương trình (ảnh 1)

Bất phương trình \[f(x) < {e^x} + m\;\] đúng với mọi \[x \in \left( { - 1;1} \right)\] khi và chỉ khi:

Xem đáp án » 07/09/2022 217

Câu 3:

Tìm số nghiệm nguyên của bất phương trình \[{\left( {\frac{1}{3}} \right)^{\sqrt {{x^2} - 3x - 10} }} > {\left( {\frac{1}{3}} \right)^{x - 2}}\]

Xem đáp án » 07/09/2022 210

Câu 4:

Tập nghiệm của bất phương trình \[{3^{\sqrt {2x} + 1}} - {3^{x + 1}} \le {x^2} - 2x\] là:

Xem đáp án » 07/09/2022 200

Câu 5:

Số nghiệm nguyên của bất phương trình \[{4^x} - {5.2^x} + 4 < 0\]là:

Xem đáp án » 07/09/2022 197

Câu 6:

Nghiệm của bất phương trình \[{e^x} + {e^{ - x}} < \frac{5}{2}\] là

Xem đáp án » 07/09/2022 196

Câu 7:

Tìm tập nghiệm của bất phương trình \[{\left( {\frac{1}{2}} \right)^x} \ge 2\].

Xem đáp án » 07/09/2022 186

Câu 8:

Tập hợp nghiệm của bất phương trình: \[{3^{3x - 2}} + \frac{1}{{{{27}^x}}} \le \frac{2}{3}\] là:

Xem đáp án » 07/09/2022 174

Câu 9:

Tập nghiệm của bất phương trình \[{\left( {{x^2} + x + 1} \right)^x} < 1\] là:

Xem đáp án » 07/09/2022 168

Câu 10:

Cho hàm số \[f\left( x \right) = {5^x}{.9^{{x^3}}}\], chọn phép biến đổi sai khi giải bất phương trình:

Xem đáp án » 07/09/2022 167

Câu 11:

Cho hàm số \[f\left( x \right) = \frac{{{3^x}}}{{{7^{{x^2} - 4}}}}\]. Hỏi khẳng định nào sau đây là sai?

Xem đáp án » 07/09/2022 166

Câu 12:

Tìm tập nghiệm của bất phương trình \[{5^x} < 7 - 2x\]

Xem đáp án » 07/09/2022 164

Câu 13:

Tìm số nghiệm nguyên của bất phương trình \[{\left( {\frac{1}{5}} \right)^{{x^2} - 2x}} \ge \frac{1}{{125}}\]

Xem đáp án » 07/09/2022 164

Câu 14:

Tìm tập nghiệm S của bất phương trình \[{2^{x - 1}} > {\left( {\frac{1}{{16}}} \right)^{\frac{1}{x}}}\]

Xem đáp án » 07/09/2022 161

Câu 15:

Tìm tập nghiệm S của bất phương trình \[{5^{x + 1}} - \frac{1}{5} > 0\]

Xem đáp án » 07/09/2022 160

Câu hỏi mới nhất

Xem thêm »
Xem thêm »