Gọi S là tập hợp các số tự nhiên n có 4 chữ số thỏa mãn \[{\left( {{2^n} + {3^n}} \right)^{2020}} < {\left( {{2^{2020}} + {3^{2020}}} \right)^n}\]. Số phần tử của S là:
A.8999
B.2019
C.1010
D.7979
\[\begin{array}{l}\,\,\,\,{\left( {{2^n} + {3^n}} \right)^{2020}} < {\left( {{2^{2020}} + {3^{2020}}} \right)^n}\\ \Leftrightarrow \ln {\left( {{2^n} + {3^n}} \right)^{2020}} < \ln {\left( {{2^{2020}} + {3^{2020}}} \right)^n}\\ \Leftrightarrow 2020\ln \left( {{2^n} + {3^n}} \right) < n\ln \left( {{2^{2020}} + {3^{2020}}} \right)\\ \Leftrightarrow \frac{{\ln \left( {{2^n} + {3^n}} \right)}}{n} < \frac{{\ln \left( {{2^{2020}} + {3^{2020}}} \right)}}{{2020}}\end{array}\]
Xét hàm đặc trưng\[f\left( x \right) = \frac{{\ln \left( {{2^x} + {3^x}} \right)}}{x}\,\,\left( {x \in {\mathbb{N}^ * }} \right)\]ta có:
\[\begin{array}{l}f\prime (x) = \frac{{\frac{{({2^x} + {3^x})\prime }}{{{2^x} + {3^x}}}.x - ln({2^x} + {3^x})}}{{{x^2}}}\forall x \in {\mathbb{N}^ * }\\f\prime (x) = \frac{{({2^x}ln2 + {3^x}ln3)x - ({2^x} + {3^x}).ln({2^x} + {3^x})}}{{{x^2}({2^x} + {3^x})}}\forall x \in {\mathbb{N}^ * }\\ = \frac{{{2^x}ln2.x - {2^x}ln({2^x} + {3^x}) + {3^x}ln3.x - {3^x}ln({2^x} + {3^x})}}{{{x^2}({2^x} + {3^x})}}\forall x \in {\mathbb{N}^ * }\\f\prime (x) = \frac{{{2^x}(xln2 - ln({2^x} + {3^x})) + {3^x}(xln3 - ln({2^x} + {3^x}))}}{{{x^2}({2^x} + {3^x})}}\forall x \in {\mathbb{N}^ * }\\f\prime (x) = \frac{{{2^x}[ln{2^x} - ln({2^x} + {3^x})] + {3^x}[ln{3^x} - ln({2^x} + {3^x})]}}{{{x^2}({2^x} + {3^x})}}\forall x \in {\mathbb{N}^ * }\end{array}\]
Vì \(\left\{ {\begin{array}{*{20}{c}}{{2^x} < {2^x} + {3^x} \Rightarrow ln{2^x} < ln({2^x} + {3^x})}\\{{3^x} < {2^x} + {3^x} \Rightarrow ln{3^x} < ln({2^x} + {3^x})}\end{array}} \right. \Rightarrow f\prime (x) < 0\forall x \in \mathbb{N} * \)
⇒ Hàm số\[y = f\left( x \right)\]nghịch biến trên\[{\mathbb{N}^ * }\]
Lại có: \[f\left( n \right) < f\left( {2020} \right) \Leftrightarrow n > 2020\]</>
Kết hợp điều kiện đề bài ta có\[2020 < n \le 9999,\,\,n \in {\mathbb{N}^ * }\]
Vậy có\[\frac{{9999 - 2021}}{1} + 1 = 7979\]giá trị của n thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y=f(x). Hàm số y=f′(x) có bảng biến thiên như sau:
Bất phương trình \[f(x) < {e^x} + m\;\] đúng với mọi \[x \in \left( { - 1;1} \right)\] khi và chỉ khi:
Tìm số nghiệm nguyên của bất phương trình \[{\left( {\frac{1}{3}} \right)^{\sqrt {{x^2} - 3x - 10} }} > {\left( {\frac{1}{3}} \right)^{x - 2}}\]
Tập nghiệm của bất phương trình \[{3^{\sqrt {2x} + 1}} - {3^{x + 1}} \le {x^2} - 2x\] là:
Số nghiệm nguyên của bất phương trình \[{4^x} - {5.2^x} + 4 < 0\]là:
Nghiệm của bất phương trình \[{e^x} + {e^{ - x}} < \frac{5}{2}\] là
Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[\left( {{3^{{x^2} - x}} - 9} \right)\left( {{2^{{x^2}}} - m} \right) \le 0\]có 5 nghiệm nguyên?
Tìm tập nghiệm của bất phương trình \[{\left( {\frac{1}{2}} \right)^x} \ge 2\].
Tập hợp nghiệm của bất phương trình: \[{3^{3x - 2}} + \frac{1}{{{{27}^x}}} \le \frac{2}{3}\] là:
Cho hàm số \[f\left( x \right) = \frac{{{3^x}}}{{{7^{{x^2} - 4}}}}\]. Hỏi khẳng định nào sau đây là sai?
Tập nghiệm của bất phương trình \[{\left( {{x^2} + x + 1} \right)^x} < 1\] là:
Cho hàm số \[f\left( x \right) = {5^x}{.9^{{x^3}}}\], chọn phép biến đổi sai khi giải bất phương trình:
Tìm số nghiệm nguyên của bất phương trình \[{\left( {\frac{1}{5}} \right)^{{x^2} - 2x}} \ge \frac{1}{{125}}\]
Tìm tập nghiệm S của bất phương trình \[{2^{x - 1}} > {\left( {\frac{1}{{16}}} \right)^{\frac{1}{x}}}\]