IMG-LOGO

Câu hỏi:

21/07/2024 139

Nguyên hàm của hàm số \[y = \frac{{\left( {{x^2} + x} \right){e^x}}}{{x + {e^{ - x}}}}dx\] là:

A.\[F\left( x \right) = x{e^x} + 1 - \ln \left| {x{e^x} + 1} \right| + C\]

Đáp án chính xác

B. \[F\left( x \right) = {e^x} + 1 - \ln \left| {x{e^x} + 1} \right| + C\]

C. \[F\left( x \right) = x{e^x} + 1 - \ln \left| {x{e^{ - x}} + 1} \right| + C\]

D. \[F\left( x \right) = x{e^x} + 1 + \ln \left| {x{e^x} + 1} \right| + C\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Ta có:

\[I = \smallint \frac{{\left( {{x^2} + x} \right){e^x}}}{{x + {e^{ - x}}}}dx = \smallint \frac{{\left( {{x^2} + x} \right){e^x}}}{{\frac{{x{e^x} + 1}}{{{e^x}}}}}dx = \smallint \frac{{\left( {{x^2} + x} \right){e^{2x}}}}{{x{e^x} + 1}}dx = \smallint \frac{{x{e^x}\left( {x + 1} \right){e^x}}}{{x{e^x} + 1}}dx.\]

Đặt

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{u = x{e^x}}\\{dv = \frac{{(x + 1){e^x}}}{{x{e^x} + 1}}dx = \frac{{d(x{e^x} + 1)}}{{x{e^x} + 1}}}\end{array}} \right.\\ \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = ({e^x} + x{e^x})dx = (x + 1){e^x}dx}\\{v = ln|x{e^x} + 1|}\end{array}} \right.\end{array}\)

Khi đó ta có: \[I = x{e^x}\ln \left| {x{e^x} + 1} \right| - \smallint \ln \left| {x{e^x} + 1} \right|\left( {x + 1} \right){e^x}dx + C.\]

Đặt\[t = x{e^x} + 1 \Rightarrow dt = \left( {{e^x} + x{e^x}} \right)dx = \left( {x + 1} \right){e^x}dx\]

\[ \Rightarrow \smallint \ln \left| {x{e^x} + 1} \right|\left( {x + 1} \right){e^x}dx = \smallint \ln \left| t \right|dt\]

Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = ln|t|}\\{dv = dt}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{1}{t}dt}\\{v = t}\end{array}} \right.\)

\[ \Rightarrow \smallint \ln \left| t \right|dt = \ln \left| t \right|.t - \smallint dt + C = \ln \left| t \right|.t - t + C\]

\[ = \left( {x{e^x} + 1} \right)\ln \left| {x{e^x} + 1} \right| - \left( {x{e^x} + 1} \right) + C.\]

Vậy\[I = x{e^x}\ln \left| {x{e^x} + 1} \right| - \left( {x{e^x} + 1} \right)\ln \left| {x{e^x} + 1} \right| + \left( {x{e^x} + 1} \right) + C\]

\[ = x{e^x} + 1 - \ln \left| {x{e^x} + 1} \right| + C.\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 0 \right) = 1,\;F(x) = f(x) - {e^x} - x\;\] là một nguyên hàm của f(x). Họ các nguyên hàm của f(x) là:

Xem đáp án » 07/09/2022 167

Câu 2:

Cho F(x) là một nguyên hàm của hàm số \[f\left( x \right) = \frac{x}{{{{\cos }^2}x}}\] thỏa mãn F(0)=0. Tính \[F(\pi )?\]

Xem đáp án » 07/09/2022 166

Câu 3:

\[\smallint x\sin x\cos xdx\]bằng:

Xem đáp án » 07/09/2022 158

Câu 4:

Chọn công thức đúng:

Xem đáp án » 07/09/2022 156

Câu 5:

Tìm nguyên hàm của hàm số \[f\left( x \right) = {x^2}ln\left( {3x} \right)\]

Xem đáp án » 07/09/2022 153

Câu 6:

Trong phương pháp nguyên hàm từng phần, nếu \(\left\{ {\begin{array}{*{20}{c}}{u = g\left( x \right)}\\{dv = h\left( x \right)dx}\end{array}} \right.\) thì:

Xem đáp án » 07/09/2022 151

Câu 7:

Biết \[F\left( x \right) = \left( {ax + b} \right).{e^x}\] là nguyên hàm của hàm số \[y = (2x + 3).{e^x}\]. Khi đó b−a là

Xem đáp án » 07/09/2022 137

Câu 8:

Ta có \[ - \frac{{x + a}}{{{e^x}}}\] là một họ nguyên hàm của hàm số \[f(x) = \frac{x}{{{e^x}}}\], khi đó:

Xem đáp án » 07/09/2022 136

Câu 9:

Gọi F(x) là một nguyên hàm của hàm số \[y = x.cosx\] mà F(0)=1. Phát biểu nào sau đây đúng:

Xem đáp án » 07/09/2022 135

Câu 10:

Biết rằng \[x{e^x}\] là một nguyên hàm của hàm số f(−x) trên khoảng \[\left( { - \infty ; + \infty } \right)\]. Gọi F(x) là một nguyên hàm của \[f\prime \left( x \right){e^x}\;\] thỏa mãn F(0)=1, giá trị của F(−1) bằng:

Xem đáp án » 07/09/2022 135

Câu 11:

Tính \[I = \smallint {e^{2x}}\cos 3xdx\] ta được:

Xem đáp án » 07/09/2022 134

Câu 12:

Cho \[F\left( x \right) = \smallint \left( {x + 1} \right)f'\left( x \right)dx\]. Tính \[I = \smallint f(x)dx\;\] theo F(x).

Xem đáp án » 07/09/2022 131

Câu 13:

Tính \[I = \smallint \ln \left( {x + \sqrt {{x^2} + 1} } \right)dx\] ta được:

Xem đáp án » 07/09/2022 128

Câu 14:

Tìm nguyên hàm F(x) của \[f\left( x \right) = \frac{{{2^x} - 1}}{{{e^x}}}.\] biết F(0)=1.

Xem đáp án » 07/09/2022 123

Câu 15:

Tính \[I = \smallint \cos \sqrt x dx\] ta được:

Xem đáp án » 07/09/2022 122

Câu hỏi mới nhất

Xem thêm »
Xem thêm »