IMG-LOGO

Câu hỏi:

18/07/2024 169

Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 0 \right) = 1,\;F(x) = f(x) - {e^x} - x\;\] là một nguyên hàm của f(x). Họ các nguyên hàm của f(x) là:

A.\[\left( {x + 1} \right){e^x} + C\]

B. \[\left( {x + 1} \right){e^x} - x + C\]

Đáp án chính xác

C. \[\left( {x + 2} \right){e^x} - x + C\]

D. \[\left( {x + 1} \right){e^x} + x + C\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Ta có:

\[\begin{array}{l}F\prime (x) = f(x)\\ \Leftrightarrow f\prime (x) - {e^x} - 1 = f(x)\\ \Leftrightarrow f\prime (x) - f(x) = {e^x} + 1\\ \Leftrightarrow {e^{ - x}}.f\prime (x) - {e^{ - x}}.f(x) = 1 + {e^{ - x}}\\ \Leftrightarrow [{e^{ - x}}.f(x)]\prime = 1 + {e^{ - x}}\\ \Leftrightarrow \smallint [{e^{ - x}}.f(x)]\prime dx = \smallint (1 + {e^{ - x}})dx\\ \Leftrightarrow {e^{ - x}}.f(x) = x - {e^{ - x}} + C\\ \Leftrightarrow f(x) = x.{e^x} - 1 + C.{e^x}\end{array}\]

Thay x=0 ta có: \[f\left( 0 \right) = - 1 + C = 1 \Leftrightarrow C = 2\]

\[\begin{array}{l} \Rightarrow f(x) = x.{e^x} - 1 + 2{e^x} = (x + 2){e^x} - 1\\ \Rightarrow \smallint f(x)dx = \smallint [(x + 2){e^x} - 1]dx\\ = \smallint (x + 2){e^x}dx - \smallint dx\\ = (x + 2){e^x} - \smallint {e^x}dx - x + C\\ = (x + 2){e^x} - {e^x} - x + C\\ = (x + 1){e^x} - x + C\end{array}\]

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho F(x) là một nguyên hàm của hàm số \[f\left( x \right) = \frac{x}{{{{\cos }^2}x}}\] thỏa mãn F(0)=0. Tính \[F(\pi )?\]

Xem đáp án » 07/09/2022 169

Câu 2:

\[\smallint x\sin x\cos xdx\]bằng:

Xem đáp án » 07/09/2022 161

Câu 3:

Chọn công thức đúng:

Xem đáp án » 07/09/2022 157

Câu 4:

Tìm nguyên hàm của hàm số \[f\left( x \right) = {x^2}ln\left( {3x} \right)\]

Xem đáp án » 07/09/2022 157

Câu 5:

Trong phương pháp nguyên hàm từng phần, nếu \(\left\{ {\begin{array}{*{20}{c}}{u = g\left( x \right)}\\{dv = h\left( x \right)dx}\end{array}} \right.\) thì:

Xem đáp án » 07/09/2022 153

Câu 6:

Biết \[F\left( x \right) = \left( {ax + b} \right).{e^x}\] là nguyên hàm của hàm số \[y = (2x + 3).{e^x}\]. Khi đó b−a là

Xem đáp án » 07/09/2022 144

Câu 7:

Ta có \[ - \frac{{x + a}}{{{e^x}}}\] là một họ nguyên hàm của hàm số \[f(x) = \frac{x}{{{e^x}}}\], khi đó:

Xem đáp án » 07/09/2022 141

Câu 8:

Nguyên hàm của hàm số \[y = \frac{{\left( {{x^2} + x} \right){e^x}}}{{x + {e^{ - x}}}}dx\] là:

Xem đáp án » 07/09/2022 140

Câu 9:

Gọi F(x) là một nguyên hàm của hàm số \[y = x.cosx\] mà F(0)=1. Phát biểu nào sau đây đúng:

Xem đáp án » 07/09/2022 138

Câu 10:

Biết rằng \[x{e^x}\] là một nguyên hàm của hàm số f(−x) trên khoảng \[\left( { - \infty ; + \infty } \right)\]. Gọi F(x) là một nguyên hàm của \[f\prime \left( x \right){e^x}\;\] thỏa mãn F(0)=1, giá trị của F(−1) bằng:

Xem đáp án » 07/09/2022 137

Câu 11:

Tính \[I = \smallint {e^{2x}}\cos 3xdx\] ta được:

Xem đáp án » 07/09/2022 136

Câu 12:

Cho \[F\left( x \right) = \smallint \left( {x + 1} \right)f'\left( x \right)dx\]. Tính \[I = \smallint f(x)dx\;\] theo F(x).

Xem đáp án » 07/09/2022 135

Câu 13:

Tính \[I = \smallint \ln \left( {x + \sqrt {{x^2} + 1} } \right)dx\] ta được:

Xem đáp án » 07/09/2022 131

Câu 14:

Tìm nguyên hàm F(x) của \[f\left( x \right) = \frac{{{2^x} - 1}}{{{e^x}}}.\] biết F(0)=1.

Xem đáp án » 07/09/2022 129

Câu 15:

Tính \[I = \smallint \cos \sqrt x dx\] ta được:

Xem đáp án » 07/09/2022 123

Câu hỏi mới nhất

Xem thêm »
Xem thêm »