Cho điểm A(0;8;2) và mặt cầu (S) có phương trình \[\left( S \right):{\left( {x - 5} \right)^2} + {\left( {y + 3} \right)^2} + {\left( {z - 7} \right)^2} = 72\;\]và điểm B(1;1;−9). Viết phương trình mặt phẳng (P) qua A tiếp xúc với (S) sao cho khoảng cách từ B đến (P) là lớn nhất. Giả sử \[\overrightarrow n = \left( {1;m;n} \right)\;\]là véctơ pháp tuyến của (P). Lúc đó:
A.\[mn = \frac{{276}}{{49}}\]
B. \[mn = - \frac{{276}}{{49}}\]
C. \[mn = 4\]
D. \[mn = - 4\]
(S) có tâm I(5;−3;7) và bán kính\[R = 6\sqrt 2 \]
Theo đề bài ta có phương trình (P) có dạng\[x + m(y - 8) + n(z - 2) = 0\]
Vì (P) tiếp xúc với (S) nên
\[{\rm{d}}(I,(P)) = \frac{{\left| {5 + m( - 3 - 8) + n(7 - 2)} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = \frac{{\left| {5 - 11m + 5n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = 6\sqrt 2 \]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow \left| {5 - 11m + 5n} \right| = 6\sqrt 2 .\sqrt {1 + {m^2} + {n^2}} }\\{ \Leftrightarrow 25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn = 72(1 + {m^2} + {n^2})}\\{ \Leftrightarrow 49{m^2} - 110m + 50n - 110mn - 47{n^2} - 47 = 0}\\{ \Leftrightarrow 49{m^2} - 110m(n + 1) - 47{n^2} + 50n - 47 = 0(1)}\\{{\rm{\Delta '}} = 3025{{(n + 1)}^2} - 49( - 47{n^2} + 50n - 47) = 5328{n^2} + 3600n + 5328 > 0}\end{array}\]
Phương trình (*) luôn có nghiệm
\[\begin{array}{*{20}{l}}{{\rm{d}}(B,(P)) = \frac{{\left| {1 + m(1 - 8) + n( - 9 - 2)} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = \frac{{\left| {1 - 7m - 11n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }}}\\{ = > d(B,(P))\max = AB \Leftrightarrow \frac{{\left| {1 - 7m - 11n} \right|}}{{\sqrt {1 + {m^2} + {n^2}} }} = 3\sqrt {19} \Leftrightarrow \sqrt {1 + {m^2} + {n^2}} = \frac{{\left| {1 - 7m - 11n} \right|}}{{3\sqrt {19} }}}\end{array}\]
Mặt khác\[\frac{{\left| {5 - 11m + 5n} \right|}}{{6\sqrt 2 }} = \sqrt {1 + {m^2} + {n^2}} \]
\[\frac{{\left| {1 - 7m - 11n} \right|}}{{3\sqrt {19} }} = \frac{{\left| {5 - 11m + 5n} \right|}}{{6\sqrt 2 }}\]
\[\begin{array}{*{20}{l}}{72(1 + 49{m^2} + 121{n^2} - 14m - 22n + 154mn) = 171(25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn)}\\{ \Leftrightarrow 8(1 + 49{m^2} + 121{n^2} - 14m - 22n + 154mn) = 19(25 + 121{m^2} + 25{n^2} - 110m + 50n - 110mn)}\\{ \Leftrightarrow - 1907{m^2} + 493{n^2} + 1978m - 1126n + 3322mn - 467 = 0(2)}\end{array}\]Từ (1) và (2)\[ \Rightarrow m.n = \frac{{276}}{{49}}\]
Đáp án cần chọn là: A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;−1) và tiếp xúc với mặt phẳng (α) có phương trình 2x−2y−z+3=0. Bán kính của (S) là:
Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 64\;\]với mặt phẳng\[\left( \alpha \right):2x + 2y + z + 10 = 0\].
Trong không gian vớ hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−1;0),B(1;1;−1) và mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]. Mặt phẳng (P) đi qua A,B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:
Trong không gian với hệ tọa độ Oxyz , phương trình nào dưới đây là phương trình mặt cầu tâm I(−3;2;−4) và tiếp xúc với mặt phẳng (Oxz)?
Trong không gian với hệ tọa độ Oxyz cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z + 2} \right)^2} = 4\] và 2 đường thẳng \({\Delta _1}:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = 1 - t}\\{z = t}\end{array}} \right.\)và \({\Delta _2}:\frac{{x - 1}}{{ - 1}} = \frac{y}{1} = \frac{z}{{ - 1}}\). Một phương trình mặt phẳng (P) song song với \[{\Delta _1},{\Delta _2}\;\] và tiếp xúc với mặt cầu (S) là:
Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;2;1);B(3;2;3), có tâm thuộc mặt phẳng (P):x−y−3=0 , đồng thời có bán kính nhỏ nhất, hãy tính bán kính R của mặt cầu (S)?
Mặt phẳng (Oyz) cắt mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 2x - 2y + 4z - 3 = 0\] theo một đường tròn có tọa độ tâm là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 9\;\]và mặt phẳng \[(P):2x - 2y + z + 3 = 0\]. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 2)^2} + {(y + 1)^2} + {(z - 4)^2} = 10\] và mặt phẳng \[(P): - 2x + y + \sqrt 5 z + 9 = 0\;\]. Gọi (Q) là tiếp diện của (S) tại M(5;0;4) . Tính góc giữa (P) và (Q).
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} - 8x + 2y + 2z - 3 = 0\;\]và đường thẳng \[\Delta :\frac{{x - 1}}{3} = \frac{y}{{ - 2}} = \frac{{z + 2}}{{ - 1}}\]. Mặt phẳng \[\left( \alpha \right)\;\]vuông góc với \[\Delta \] và cắt (S) theo giao tuyến là đường tròn (C) có bán kính lớn nhất. Phương trình \[\left( \alpha \right)\;\]là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x + 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 25\] và mặt phẳng \[(\alpha ):2x + y - 2z + m = \;0\]. Tìm các giá trị của m để \[\left( \alpha \right)\;\]và (S) không có điểm chung.
Mặt cầu (S) có tâm I(−1;2;−5) cắt mặt phẳng \[(P):2x - 2y - z + 10 = 0\;\]theo thiết diện là hình tròn có diện tích \[3\pi \]. Phương trình của (S) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 6x - 4z + 9 - {m^2} = 0\]. Gọi T là tập các giá trị của m để mặt cầu (S) tiếp xúc với mặt phẳng (Oyz). Tích các giá trị của mm trong T bằng: