IMG-LOGO

Câu hỏi:

21/07/2024 95

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau:

 Cho hàm số y=f(x) có bảng biến thiên như sau:Tổng số tiệm cận đứng  (ảnh 1)

Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

A.3.

Đáp án chính xác

B.2.

C.1.

D.4.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án A

ĐTHS có tiệm cận đứng x= 2. Từ \[\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } = - 1 \Rightarrow TCN:y = - 1\\\mathop {\lim }\limits_{x \to + \infty } = 0 \Rightarrow TCN:y = 0\end{array} \right.\] Chọn A.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai số phức \[{z_1} = 1 + 2i,{\rm{ }}{z_2} = 2 - 3i.\] Số phức \[w = {z_1} + {z_2}\] có phần thực bằng

Xem đáp án » 08/09/2022 363

Câu 2:

Cho hàm số bậc bốn \[y = f\left( x \right)\] có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình \[f\left( {\left| {2020x + m} \right|} \right) = 6m + 12\] có đúng 4 nghiệm thực phân biệt. Tính tổng tất cả các phần tử của S.

 Cho hàm số bậc bốn y=f(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả  (ảnh 1)

Xem đáp án » 08/09/2022 235

Câu 3:

Cho hàm số f(x) liên tục trên \[\mathbb{R}.\] Gọi S là diện tích hình phẳng giới hạn bởi các đường \[y = f\left( x \right),{\rm{ }}y = 0,{\rm{ }}x = - 3\] và \[x = 0\] (như hình vẽ). Mệnh đề nào dưới đây là đúng?

 Cho hàm số f(x) liên tục trên R.  Gọi S là diện tích hình phẳng giới hạn bởi các đường  (ảnh 1)

Xem đáp án » 08/09/2022 211

Câu 4:

Trong không gian Oxyz,cho mặt phẳng \[\left( P \right):x - 4y + 3z - 2 = 0.\] Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

Xem đáp án » 08/09/2022 207

Câu 5:

Cho (H) là hình phẳng giới hạn bởi parabol \[y = 2{x^2} - 1\] và nửa đường tròn có phương trình \[y = \sqrt {2 - {x^2}} \] (với \[ - \sqrt 2 \le x \le \sqrt 2 \]) (phần gạch chéo trong hình vẽ). Diện tích của (H) bằng

 Cho (H) là hình phẳng giới hạn bởi parabol y=2x^2 -1  và nửa đường tròn có  (ảnh 1)

Xem đáp án » 08/09/2022 200

Câu 6:

Giới hạn \[\lim \frac{1}{{2019n + 2020}}\] bằng

Xem đáp án » 08/09/2022 188

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \[\widehat {BAC} = 60^\circ .\] Cạnh \[SC = \frac{{a\sqrt 6 }}{2}\] và vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng \[SA\] và \[BD\] bằng

Xem đáp án » 08/09/2022 185

Câu 8:

Cho hình trụ (T) có chiều cao bằng 2. Một mặt phẳng (P) cắt hình trụ (T) theo thiết diện là hình chữ nhật ABCD có các cạnh \[AB,{\rm{ }}CD\] lần lượt là các dây cung của hai đường tròn đáy. Biết cạnh \[AB = AD = 2\sqrt 5 ,\] tính thể tích của khối trụ đã cho.

Xem đáp án » 08/09/2022 174

Câu 9:

Chọn ngẫu nhiên một số tự nhiên A có 4 chữ số. Gọi N là số thỏa mãn \[{3^N} = A.\] Xác suất để N là số tự nhiên bằng

Xem đáp án » 08/09/2022 169

Câu 10:

Cho hàm \[y = f\left( x \right) = {x^4} - 6{x^3} + 12{x^2} - \left( {2m - 1} \right)x + 3m + 2\], với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số \[y = f\left( {\left| x \right|} \right)\] có đúng 7 điểm cực trị?

Xem đáp án » 08/09/2022 169

Câu 11:

Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng \[\left( P \right):2x - 3y + 4z - 1 = 0.\] Xét mặt phẳng \[\left( Q \right):\left( {2 - m} \right)x + \left( {2m - 1} \right)y + 12z - 2 = 0,\] với m là tham số thực. Tìm tất cả các giá trị thực của m để mặt phẳng (Q) song song với mặt phẳng (P).

Xem đáp án » 08/09/2022 164

Câu 12:

Cho hàm số f(x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 08/09/2022 156

Câu 13:

Cho \[{9^x} + {9^{ - x}} = 14.\] Tính giá trị của biểu thức \[P = \frac{{6 - 3\left( {{3^x} + {3^{ - x}}} \right)}}{{12 + {3^{x + 1}} + {3^{1 - x}}}}.\]

Xem đáp án » 08/09/2022 155

Câu 14:

Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ. Bất phương trình \[f\left( x \right) \le {3^x} - 2x + m\] có nghiệm với mọi \[x \in \left( { - \infty ;1} \right]\] khi và chỉ khi

 Cho hàm số y=f(x) có đạo hàm liên tục trên R và đồ thị hàm số y=f'(x) như hình vẽ.  (ảnh 1)

Xem đáp án » 08/09/2022 152

Câu 15:

Tính đạo hàm của hàm số \[y = {\log _2}\sqrt {2x + 3} .\]

Xem đáp án » 08/09/2022 150

Câu hỏi mới nhất

Xem thêm »
Xem thêm »