Thứ năm, 14/11/2024
IMG-LOGO

Câu hỏi:

18/07/2024 111

Cho hình lăng trụ \[ABC.A'B'C'\]. Gọi M, N, P lần lượt là các điểm thuộc các cạnh \[AA'\], \[BB'\], \[CC'\] sao cho \[AM = 2MA'\], \[NB' = 2NB\], \[PC = PC'\]. Gọi \[{V_1}\], \[{V_2}\] lần lượt là thể tích của hai khối đa diện \[ABCMNP\] và \[A'B'C'MNP\]. Tính tỉ số \[\frac{{{V_1}}}{{{V_2}}}\].

A.\[\frac{{{V_1}}}{{{V_2}}} = 2\]

B.\[\frac{{{V_1}}}{{{V_2}}} = \frac{1}{2}\]

C.\[\frac{{{V_1}}}{{{V_2}}} = 1\]

Đáp án chính xác

D.\[\frac{{{V_1}}}{{{V_2}}} = \frac{2}{3}\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án C

Gọi Vlà thể tích khối lăng trụ \(ABC.A'B'C'\)

 Cho hình lăng trụ ABC/A'B'C'. Gọi M, N, P lần lượt là các điểm thuộc các  (ảnh 1)

Ta có \({V_1} = {V_{M.ABC}} + {V_{M.BCPN}}\).

\({V_{M.ABC}} = \frac{1}{3}d\left( {M;\left( {ABC} \right)} \right).{S_{ABC}} = \frac{1}{3}.\frac{2}{3}d\left( {A';\left( {ABC} \right)} \right).{S_{ABC}} = \frac{2}{9}V\).

\(\frac{{{V_{M.BCPN}}}}{{{V_{M.BCC'B'}}}} = \frac{{{S_{BCPN}}}}{{{S_{BCC'B'}}}} = \frac{{\frac{1}{2}d\left( {C;BB'} \right).\left( {BN + CP} \right)}}{{\frac{1}{2}d\left( {C;BB'} \right).\left( {BB' + CC'} \right)}} = \frac{{BN + CP}}{{BB' + CC'}} = \frac{{\frac{1}{3}BB' + \frac{1}{2}CC'}}{{BB' + CC'}}\)

\( \Rightarrow {V_{M.BCPN}} \Rightarrow \frac{5}{{12}}{V_{M.BCC'B'}} = \frac{5}{{12}}{V_{A.BCC'B'}} = \frac{5}{{12}}.2{V_{ABC'B'}} = \frac{5}{{12}}.2.\frac{1}{3}V = \frac{5}{{18}}V\)

\( \Rightarrow {V_1} = {V_{M.ABC}} + {V_{M.BCPN}} = \frac{2}{9}V + \frac{5}{{18}}V = \frac{1}{2}V \Rightarrow {V_2} = V - \frac{1}{2}V = \frac{1}{2}V \Rightarrow \frac{{{V_1}}}{{{V_2}}} = 1\).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai số phức \[{z_1} = 1 + 2i,{\rm{ }}{z_2} = 2 - 3i.\] Số phức \[w = {z_1} + {z_2}\] có phần thực bằng

Xem đáp án » 08/09/2022 320

Câu 2:

Cho hàm số bậc bốn \[y = f\left( x \right)\] có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình \[f\left( {\left| {2020x + m} \right|} \right) = 6m + 12\] có đúng 4 nghiệm thực phân biệt. Tính tổng tất cả các phần tử của S.

 Cho hàm số bậc bốn y=f(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả  (ảnh 1)

Xem đáp án » 08/09/2022 228

Câu 3:

Cho hàm số f(x) liên tục trên \[\mathbb{R}.\] Gọi S là diện tích hình phẳng giới hạn bởi các đường \[y = f\left( x \right),{\rm{ }}y = 0,{\rm{ }}x = - 3\] và \[x = 0\] (như hình vẽ). Mệnh đề nào dưới đây là đúng?

 Cho hàm số f(x) liên tục trên R.  Gọi S là diện tích hình phẳng giới hạn bởi các đường  (ảnh 1)

Xem đáp án » 08/09/2022 204

Câu 4:

Trong không gian Oxyz,cho mặt phẳng \[\left( P \right):x - 4y + 3z - 2 = 0.\] Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

Xem đáp án » 08/09/2022 201

Câu 5:

Cho (H) là hình phẳng giới hạn bởi parabol \[y = 2{x^2} - 1\] và nửa đường tròn có phương trình \[y = \sqrt {2 - {x^2}} \] (với \[ - \sqrt 2 \le x \le \sqrt 2 \]) (phần gạch chéo trong hình vẽ). Diện tích của (H) bằng

 Cho (H) là hình phẳng giới hạn bởi parabol y=2x^2 -1  và nửa đường tròn có  (ảnh 1)

Xem đáp án » 08/09/2022 190

Câu 6:

Giới hạn \[\lim \frac{1}{{2019n + 2020}}\] bằng

Xem đáp án » 08/09/2022 181

Câu 7:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \[\widehat {BAC} = 60^\circ .\] Cạnh \[SC = \frac{{a\sqrt 6 }}{2}\] và vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng \[SA\] và \[BD\] bằng

Xem đáp án » 08/09/2022 180

Câu 8:

Cho hình trụ (T) có chiều cao bằng 2. Một mặt phẳng (P) cắt hình trụ (T) theo thiết diện là hình chữ nhật ABCD có các cạnh \[AB,{\rm{ }}CD\] lần lượt là các dây cung của hai đường tròn đáy. Biết cạnh \[AB = AD = 2\sqrt 5 ,\] tính thể tích của khối trụ đã cho.

Xem đáp án » 08/09/2022 163

Câu 9:

Chọn ngẫu nhiên một số tự nhiên A có 4 chữ số. Gọi N là số thỏa mãn \[{3^N} = A.\] Xác suất để N là số tự nhiên bằng

Xem đáp án » 08/09/2022 161

Câu 10:

Cho hàm \[y = f\left( x \right) = {x^4} - 6{x^3} + 12{x^2} - \left( {2m - 1} \right)x + 3m + 2\], với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số \[y = f\left( {\left| x \right|} \right)\] có đúng 7 điểm cực trị?

Xem đáp án » 08/09/2022 161

Câu 11:

Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng \[\left( P \right):2x - 3y + 4z - 1 = 0.\] Xét mặt phẳng \[\left( Q \right):\left( {2 - m} \right)x + \left( {2m - 1} \right)y + 12z - 2 = 0,\] với m là tham số thực. Tìm tất cả các giá trị thực của m để mặt phẳng (Q) song song với mặt phẳng (P).

Xem đáp án » 08/09/2022 157

Câu 12:

Cho hàm số f(x) có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 08/09/2022 152

Câu 13:

Trong không gian Oxyz,cho điểm \[A\left( {2; - 1; - 2} \right)\] và đường thẳng d có phương trình \[\frac{{x - 1}}{1} = \frac{{y - 1}}{{ - 1}} = \frac{{z - 1}}{1}\]. Mặt phẳng (P) đi qua A, song song với d và khoảng cách từ d tới (P) là lớn nhất. Mặt phẳng (P) vuông góc với mặt phẳng nào dưới đây?

Xem đáp án » 08/09/2022 146

Câu 14:

Cho \[{9^x} + {9^{ - x}} = 14.\] Tính giá trị của biểu thức \[P = \frac{{6 - 3\left( {{3^x} + {3^{ - x}}} \right)}}{{12 + {3^{x + 1}} + {3^{1 - x}}}}.\]

Xem đáp án » 08/09/2022 145

Câu 15:

Tính đạo hàm của hàm số \[y = {\log _2}\sqrt {2x + 3} .\]

Xem đáp án » 08/09/2022 144

Câu hỏi mới nhất

Xem thêm »
Xem thêm »