Cho hàm số f(x) có đạo hàm liên tục trên đoạn \[\left[ {0;1} \right]\], \[f\left( x \right)\] và \[f'\left( x \right)\] đều nhận giá trị dương trên đoạn \[\left[ {0;1} \right]\]. Biết rằng \[\int\limits_0^1 {\left[ {f'\left( x \right).{{\left[ {f\left( x \right)} \right]}^2} + 4} \right]} {\mkern 1mu} dx = 4\int\limits_0^1 {\sqrt {f'\left( x \right)} } .f\left( x \right)dx\] và \[f\left( 0 \right) = 3.\] Tích phân \[\int\limits_0^1 {{{\left[ {f\left( x \right)} \right]}^3}dx} \] bằng
A.33.
B.10.
C.21.
D.19.
Chọn đáp án A
Ta có \[\int\limits_0^1 {\left[ {f'\left( x \right).{{\left[ {f\left( x \right)} \right]}^2} + 4} \right]dx - 4\int\limits_0^1 {\sqrt {f'\left( x \right)} .f\left( x \right)dx} = 0} \]
\( \Rightarrow \int\limits_0^1 {\left[ {f'\left( x \right).{{\left[ {f\left( x \right)} \right]}^2} - 4\sqrt {f'\left( x \right)} .f\left( x \right) + 4} \right]dx} = 0 \Rightarrow \int\limits_0^1 {{{\left[ {\sqrt {f'\left( x \right)} .f\left( x \right) - 2} \right]}^2}dx} = 0\)
\( \Rightarrow \sqrt {f'\left( x \right)} .f\left( x \right) - 2 = 0 \Rightarrow {\left[ {f\left( x \right)} \right]^2}.f'\left( x \right) = 4 \Rightarrow \int {{{\left[ {f\left( x \right)} \right]}^2}.f'\left( x \right)dx} = 4x + {C_1}\)
\[ \Rightarrow \int {{{\left[ {f\left( x \right)} \right]}^2}d\left[ {f\left( x \right)} \right] = 4x + {C_1} \Rightarrow \frac{{{{\left[ {f\left( x \right)} \right]}^3}}}{3} = 4x + {C_2}} \].
Mà \(f\left( 0 \right) = 3 \Rightarrow {C_2} = 9 \Rightarrow {\left[ {f\left( x \right)} \right]^3} = 3\left( {4x + 9} \right) \Rightarrow \int\limits_0^1 {{{\left[ {f\left( x \right)} \right]}^3}dx} = \left. {3\left( {2{x^2} + 9x} \right)} \right|_0^1 = 33\).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai số phức \[{z_1} = 1 + 2i,{\rm{ }}{z_2} = 2 - 3i.\] Số phức \[w = {z_1} + {z_2}\] có phần thực bằng
Cho hàm số bậc bốn \[y = f\left( x \right)\] có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị thực của tham số m để phương trình \[f\left( {\left| {2020x + m} \right|} \right) = 6m + 12\] có đúng 4 nghiệm thực phân biệt. Tính tổng tất cả các phần tử của S.
Cho hàm số f(x) liên tục trên \[\mathbb{R}.\] Gọi S là diện tích hình phẳng giới hạn bởi các đường \[y = f\left( x \right),{\rm{ }}y = 0,{\rm{ }}x = - 3\] và \[x = 0\] (như hình vẽ). Mệnh đề nào dưới đây là đúng?
Trong không gian Oxyz,cho mặt phẳng \[\left( P \right):x - 4y + 3z - 2 = 0.\] Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
Cho (H) là hình phẳng giới hạn bởi parabol \[y = 2{x^2} - 1\] và nửa đường tròn có phương trình \[y = \sqrt {2 - {x^2}} \] (với \[ - \sqrt 2 \le x \le \sqrt 2 \]) (phần gạch chéo trong hình vẽ). Diện tích của (H) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \[\widehat {BAC} = 60^\circ .\] Cạnh \[SC = \frac{{a\sqrt 6 }}{2}\] và vuông góc với mặt phẳng đáy. Khoảng cách giữa hai đường thẳng \[SA\] và \[BD\] bằng
Cho hình trụ (T) có chiều cao bằng 2. Một mặt phẳng (P) cắt hình trụ (T) theo thiết diện là hình chữ nhật ABCD có các cạnh \[AB,{\rm{ }}CD\] lần lượt là các dây cung của hai đường tròn đáy. Biết cạnh \[AB = AD = 2\sqrt 5 ,\] tính thể tích của khối trụ đã cho.
Chọn ngẫu nhiên một số tự nhiên A có 4 chữ số. Gọi N là số thỏa mãn \[{3^N} = A.\] Xác suất để N là số tự nhiên bằng
Cho hàm \[y = f\left( x \right) = {x^4} - 6{x^3} + 12{x^2} - \left( {2m - 1} \right)x + 3m + 2\], với m là tham số thực. Có bao nhiêu giá trị nguyên của m để hàm số \[y = f\left( {\left| x \right|} \right)\] có đúng 7 điểm cực trị?
Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng \[\left( P \right):2x - 3y + 4z - 1 = 0.\] Xét mặt phẳng \[\left( Q \right):\left( {2 - m} \right)x + \left( {2m - 1} \right)y + 12z - 2 = 0,\] với m là tham số thực. Tìm tất cả các giá trị thực của m để mặt phẳng (Q) song song với mặt phẳng (P).
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho \[{9^x} + {9^{ - x}} = 14.\] Tính giá trị của biểu thức \[P = \frac{{6 - 3\left( {{3^x} + {3^{ - x}}} \right)}}{{12 + {3^{x + 1}} + {3^{1 - x}}}}.\]
Cho hàm số \[y = f\left( x \right)\] có đạo hàm liên tục trên \[\mathbb{R}\] và đồ thị hàm số \[y = f'\left( x \right)\] như hình vẽ. Bất phương trình \[f\left( x \right) \le {3^x} - 2x + m\] có nghiệm với mọi \[x \in \left( { - \infty ;1} \right]\] khi và chỉ khi