Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

18/07/2024 91

Trong không gian, cho hình trụ (T) có chiều cao bằng 8cm. Mặt phẳng (α) song song với trục của (T), cắt (T) theo thiết diện (D) là một hình vuông. Khoảng cách từ trục của (T) đến mặt phẳng chứa (D) bằng 3cm. Tính thể tích của khối trụ đã cho.

A.\[210\pi c{m^3}.\]

B.\[200\pi c{m^3}.\]

Đáp án chính xác

C.\[280\pi c{m^3}.\]

D.\[270\pi c{m^3}.\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Lời giải:

Chọn đáp án B

 Trong không gian, cho hình trụ (T) có chiều cao bằng 8cm. Mặt phẳng (α)  (ảnh 1)

Thiết diện là hình vuông MNPQnhư hình vẽ.

Kẻ \(OH \bot MN \Rightarrow O'H = 3cm\).

Cạnh \(QM = MN = 8cm \Rightarrow HN = 4cm\)

\( \Rightarrow O'N = \sqrt {H{N^2} + O'{H^2}} = \sqrt {{4^2} + {3^2}} = 5cm\)

\( \Rightarrow V = \pi {r^2}h = \pi O'{N^2}.QM = \pi {.5^2}.8 = 200c{m^3}\).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz,cho hai vectơ \[\vec u = \left( {1;0;2} \right)\] và \[\vec v = \left( { - 1;2;0} \right).\] Tính \[P = \cos \left( {\vec u;\vec v} \right).\]

Xem đáp án » 08/09/2022 909

Câu 2:

Cho hàm số \[y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx + 1\] (m là tham số thực) có hai điểm cực trị \[{x_1},{\rm{ }}{x_2}\] thỏa mãn \[x_1^2 + x_2^2 = 2.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án » 08/09/2022 191

Câu 3:

Cho \[a,{\rm{ }}b,{\rm{ }}x\] là các số thực dương tùy ý thỏa mãn \[{\log _2}x = 2{\log _2}a + 3{\log _2}b.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án » 08/09/2022 190

Câu 4:

Thầy Bắc đặt lên bàn 30 tấm thẻ đánh số từ 1 đến 30. Bạn Nam chọn ngẫu nhiên 10 tấm thẻ. Tính xác suất để trong 10 tấm thẻ lấy ra có 5 tấm thẻ mang số lẻ, 5 tấm mang số chẵn, trong đó chỉ có một tấm thẻ mang số chia hết cho 10.

Xem đáp án » 08/09/2022 173

Câu 5:

Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \left| {{x^4} - 4{x^3} - 8{x^2} - m} \right|\] có đúng 7 điểm cực trị?

Xem đáp án » 08/09/2022 170

Câu 6:

Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \[y = {x^2} - 4x + 4\], trục tung và trục hoành. Xác định \[k\] để đường thẳng d đi qua điểm \[A\left( {0;4} \right)\] có hệ số góc \[k\] chia (H) thành hai phần có diện tích bằng nhau (như hình vẽ bên).

 Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y=x^2-4x+4, trục tung và trục hoành. (ảnh 1)

Xem đáp án » 08/09/2022 169

Câu 7:

Tính đạo hàm của hàm số \[y = {\log _{\frac{2}{3}}}\sqrt {{x^2} + 1} .\]

Xem đáp án » 08/09/2022 167

Câu 8:

Cho hàm số f(x) có bảng biến thiên như sau:

 Cho hàm số f(x) có bảng biến thiên như sau:Hàm số đã cho đồng biến trên khoảng nào dưới đây? (ảnh 1)

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Xem đáp án » 08/09/2022 165

Câu 9:

Cho hàm số f(x) liên tục trên \[\mathbb{R}\] và có đồ thị (C) như hình vẽ. Diện tích S của hình phẳng giới hạn bởi các đường \[y = f\left( x \right),{\rm{ }}y = 0,{\rm{ }}x = - 1,{\rm{ }}x = 2\] được tính theo công thức?

 Cho hàm số f(x) liên tục trên R và có đồ thị (C) như hình vẽ. Diện tích S của hình  (ảnh 1)

Xem đáp án » 08/09/2022 161

Câu 10:

Biết rằng \[\int\limits_1^2 {x{{\left( {x - 1} \right)}^n}dx} = \frac{{27}}{{182}},\] với \[n \in {\mathbb{N}^*}.\] Mệnh đề nào dưới đây là đúng?

Xem đáp án » 08/09/2022 149

Câu 11:

Cho hai số phức \[{z_1} = 1 + 2i,{\rm{ }}{z_2} = 2 - 3i.\] Số phức \[w = {z_1} - {z_2}\] có phần ảo bằng

Xem đáp án » 08/09/2022 147

Câu 12:

Giá trị lớn nhất của hàm số \[y = \frac{{{x^2} + 3}}{{x - 1}}\] trên đoạn \[\left[ { - 2;0} \right]\] bằng

Xem đáp án » 08/09/2022 146

Câu 13:

Cho hàm số f(x) có bảng biến thiên như sau:

 Cho hàm số f(x) có bảng biến thiên như sau:Giá trị cực đại của hàm số đã cho là (ảnh 1)

Giá trị cực đại của hàm số đã cho là

Xem đáp án » 08/09/2022 140

Câu 14:

Tích phân \[\int\limits_0^2 {{e^{2x + 1}}dx} \] bằng

Xem đáp án » 08/09/2022 133

Câu 15:

Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng \[\left( P \right):x - 2y + 3z - 4 = 0.\] Xét mặt phẳng \[\left( Q \right):4x + \left( {m - 1} \right)y + \left( {8 - m} \right)z - 3 = 0,\] với m là tham số thực. Tìm tất cả các giá trị thực của m để mặt phẳng (Q) vuông góc với mặt phẳng (P).

Xem đáp án » 08/09/2022 127

Câu hỏi mới nhất

Xem thêm »
Xem thêm »