Cho khối chóp S.ABCcó hai điểm \[M,{\rm{ }}N\] lần lượt thuộc hai cạnh \[SA,{\rm{ }}SB\] sao cho \[MA = 2MS,{\rm{ }}NS = 2NB.\] Mặt phẳng \[\left( \alpha \right)\] qua hai điểm M, N và song song với SC chia khối chóp thành hai khối đa diện. Tính tỉ số thể tích t của hai khối đa diện đó, biết \[t < 1.\]
A.\[\frac{3}{5}\].
B.\[\frac{4}{9}\].
C.\[\frac{3}{4}\].
D.\[\frac{4}{5}\].
Lời giải:
Chọn đáp án D
Thiết diện là tứ giác MNPQnhư hình vẽ với \(NP{\rm{ // MQ // SC}}\).
Ta có \({V_{MNABPQ}} = {V_{N.ABPQ}} + {V_{N.AMQ}}\).
+ \({V_{N.ABPQ}} = \frac{1}{3}d\left( {N;\left( {ABC} \right)} \right).{S_{ABPQ}} = \frac{1}{3}.\frac{1}{3}d\left( {S;\left( {ABC} \right)} \right).\left( {{S_{ABC}} - {S_{CPQ}}} \right).\)
+ \(\frac{{{S_{CPQ}}}}{{{S_{CBA}}}} = \frac{{CP}}{{CB}}.\frac{{CQ}}{{CA}} = \frac{2}{3}.\frac{1}{3} \Rightarrow {S_{CPQ}} = \frac{2}{9}{S_{ABC}} \Rightarrow {V_{N.ABPQ}} = \frac{1}{9}d\left( {S;\left( {ABC} \right)} \right).\frac{7}{9}{S_{ABC}} = \frac{7}{{27}}{V_{S.ABC}}.\)
\({V_{N.AMQ}} = \frac{1}{3}d\left( {N;\left( {AMQ} \right)} \right).{S_{AMQ}} = \frac{1}{3}.\frac{2}{3}d\left( {B;\left( {SAC} \right)} \right).\frac{4}{9}{S_{SAC}} = \frac{8}{{27}}{V_{S.ABC}}\)
\( \Rightarrow {V_{MNABPQ}} = {V_{N.ABPQ}} + {V_{N.AMQ}} = \frac{5}{9}{V_{S.ABCD}} \Rightarrow {V_{SMNPCQ}} = \frac{4}{9}{V_{S.ABCD}} \Rightarrow t = \frac{{{V_{SMNPCQ}}}}{{{V_{MNABPQ}}}} = \frac{4}{5}.\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian Oxyz,cho hai vectơ \[\vec u = \left( {1;0;2} \right)\] và \[\vec v = \left( { - 1;2;0} \right).\] Tính \[P = \cos \left( {\vec u;\vec v} \right).\]
Cho hàm số \[y = 2{x^3} - 3\left( {m + 1} \right){x^2} + 6mx + 1\] (m là tham số thực) có hai điểm cực trị \[{x_1},{\rm{ }}{x_2}\] thỏa mãn \[x_1^2 + x_2^2 = 2.\] Mệnh đề nào dưới đây là đúng?
Cho \[a,{\rm{ }}b,{\rm{ }}x\] là các số thực dương tùy ý thỏa mãn \[{\log _2}x = 2{\log _2}a + 3{\log _2}b.\] Mệnh đề nào dưới đây là đúng?
Có bao nhiêu giá trị nguyên của tham số m để hàm số \[y = \left| {{x^4} - 4{x^3} - 8{x^2} - m} \right|\] có đúng 7 điểm cực trị?
Tính đạo hàm của hàm số \[y = {\log _{\frac{2}{3}}}\sqrt {{x^2} + 1} .\]
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \[y = {x^2} - 4x + 4\], trục tung và trục hoành. Xác định \[k\] để đường thẳng d đi qua điểm \[A\left( {0;4} \right)\] có hệ số góc \[k\] chia (H) thành hai phần có diện tích bằng nhau (như hình vẽ bên).
Cho hàm số f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hàm số f(x) liên tục trên \[\mathbb{R}\] và có đồ thị (C) như hình vẽ. Diện tích S của hình phẳng giới hạn bởi các đường \[y = f\left( x \right),{\rm{ }}y = 0,{\rm{ }}x = - 1,{\rm{ }}x = 2\] được tính theo công thức?
Biết rằng \[\int\limits_1^2 {x{{\left( {x - 1} \right)}^n}dx} = \frac{{27}}{{182}},\] với \[n \in {\mathbb{N}^*}.\] Mệnh đề nào dưới đây là đúng?
Giá trị lớn nhất của hàm số \[y = \frac{{{x^2} + 3}}{{x - 1}}\] trên đoạn \[\left[ { - 2;0} \right]\] bằng
Cho hai số phức \[{z_1} = 1 + 2i,{\rm{ }}{z_2} = 2 - 3i.\] Số phức \[w = {z_1} - {z_2}\] có phần ảo bằng
Cho hàm số f(x) có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho là
Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng \[\left( P \right):x - 2y + 3z - 4 = 0.\] Xét mặt phẳng \[\left( Q \right):4x + \left( {m - 1} \right)y + \left( {8 - m} \right)z - 3 = 0,\] với m là tham số thực. Tìm tất cả các giá trị thực của m để mặt phẳng (Q) vuông góc với mặt phẳng (P).