Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có bảng biến thiên như sau:
Xác định số nghiệm của phương trình \[\left| {f\left( {{x^3} - 3{x^2}} \right)} \right| = \frac{3}{2}\], biết \[f\left( { - 4} \right) = 0\]
Đáp án C
Đặt \[t = {x^3} - 3{x^2}\], ta có \[t' = 3{x^2} - 6x;t' = 0\left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\]
Bảng biến thiên (1):
Phương trình đã cho trở thành
Từ giả thiết, ta có bảng biến thiên (2) của hàm số \[y = f\left( x \right)\]:
Dựa vào bảng biến thiên (2), ta có
+) . Dựa vào bảng biến thiên (1), ta có phương trình (1.1) có 1 nghiệm và phương trình (1.2) có 1 nghiệm (các nghiệm này không trùng nhau).
Dựa vào bảng biến thiên (1), ta có phương trình (2.1) có 3 nghiệm; phương trình (2.2) có 3 nghiệm; phương trình (2.3) có 1 nghiệm; phương trình (2.4) có 1 nghiệm (các nghiệm này không trùng nhau và không trùng với các nghiệm của phương trình \[f\left( t \right) = \frac{3}{2}\]).
Vậy phương trình đã cho có 10 nghiệm.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Với a là số thực dương tùy ý, \[{\log _2}\left( {8a} \right)\] bằng
Diện tích phần hình phẳng gạch chéo như hình vẽ được tính theo công thức nào dưới đây?
Cho hai số thực \[a,b > 1\] sao cho tồn tại số thực \[x\left( {x > 0,x \ne 1} \right)\] thỏa mãn \[{a^{{{\log }_b}}}x = {b^{{{\log }_a}{x^2}}}\]. Khi biểu thức \[P = {\ln ^2}a + {\ln ^2}b - \ln \left( {ab} \right)\] đạt giá trị nhỏ nhất thì \[a + b\] thuộc khoảng nào dưới đây?
Kí hiệu \[{z_1},{z_2}\] là hai nghiệm phức của phương trình \[{z^2} - 4z + 8 = 0\]. Giá trị của \[\left| {{z_1}} \right| + \left| {{z_2}} \right|\] bằng
Từ một tấm tôn dạng hình tròn với bán kính \[R = 50cm\], một anh thợ cần cắt một tấm tôn có dạng hình chữ nhật nội tiếp hình tròn trên. Anh ta gò tấm tôn hình chữ nhật này thành một hình trụ không đáy (như hình vẽ) để thả gà vào trong. Thể tích lớn nhất của khối trụ thu được gần nhất với kết quả nào dưới đây?
Cho hình phẳng \[\left( H \right)\] giới hạn bởi các đường \[y = {x^2},y = 0,x = 0,x = 4\]. Đường thẳng \[y = k\left( {0 < k < 16} \right)\] chia hình \[\left( H \right)\] thành hai phần có diện tích \[{S_1},{S_2}\] như hình vẽ. Tìm k để \[{S_1} = {S_2}\]
Cho hàm số \[f\left( x \right)\] có bảng biến thiên như sau:
Phương trình \[f\left( x \right) - 2 = 0\] có số nghiệm thực là
Trong không gian Oxyz, cho mặt phẳng . Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, cạnh \[AB = a,SA = a\sqrt 3 \]và SA vuông góc với mặt phẳng đáy. Góc giữa đường thẳng SB và mặt phẳng \[\left( {SAC} \right)\] bằng
Tập nghiệm của phương trình \[{2^{{x^2} - 3x + 6}} = {2^{x + 3}}\] là
Trong không gian Oxyz, hình chiếu vuông góc của điểm \[M\left( {1;2; - 3} \right)\] trên trục Oy có tọa độ là
Cho cấp số cộng \[\left( {{u_n}} \right)\] với \[{u_2} = 6,{u_5} = 21\]. Tính d.
Cho hàm số \[f\left( x \right)\] có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho lăng trụ tam giác đều \[ABC.A'B'C'\] có cạnh \[AB = 6,AA' = 8\]. Tính thể tích của khối trụ có hai đáy là hai đường tròn lần lượt ngoại tiếp tam giác ABC và \[A'B'C'\]