IMG-LOGO

Câu hỏi:

21/07/2024 87

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \[\left[ {1;6} \right]\] và thỏa mãn \[f\left( x \right) = \frac{{f\left( {2\sqrt {x + 3} - 3} \right)}}{{\sqrt {x + 3} }} + \frac{x}{{\sqrt {x + 3} }}.\] Tính tích phân của \[I = \int\limits_3^6 {f\left( x \right){\rm{d}}x} \]

A. \[I = \frac{{10}}{3}.\]                            

B. \[I = \frac{{20}}{3}.\]       

Đáp án chính xác

C. \[I = 4.\]  

D. \[I = \frac{{10}}{3} + \ln 2.\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Theo giả thiết ta có: \(f\left( x \right) = \frac{{f\left( {2\sqrt {x + 3} - 3} \right)}}{{\sqrt {x + 3} }} + \frac{x}{{\sqrt {x + 3} }}\)

Lấy tích phân hai vế cận từ 1 đến 6 ta được: \(\int\limits_1^6 {f\left( x \right)d{\rm{x}}} = \int\limits_1^6 {\frac{{f\left( {2\sqrt {x + 3} - 3} \right)}}{{\sqrt {x + 3} }}d{\rm{x}}} + \int\limits_1^6 {\frac{{x{\rm{dx}}}}{{\sqrt {x + 3} }}} \)

\( \Leftrightarrow \int\limits_1^6 {f\left( x \right)d{\rm{x}}} = \int\limits_1^6 {f\left( {2\sqrt {x + 3} - 3} \right)d\left( {2\sqrt {x + 3} - 3} \right)} + \frac{{20}}{3}\) (Casio ta được \(\int\limits_1^6 {\frac{{x{\rm{dx}}}}{{\sqrt {x + 3} }}} = \frac{{20}}{3}\))

\( \Leftrightarrow \int\limits_1^6 {f\left( x \right)d{\rm{x}}} = \int\limits_1^3 {f\left( u \right)du} + \frac{{20}}{3} \Leftrightarrow \int\limits_1^6 {f\left( x \right)d{\rm{x}}} = \int\limits_1^3 {f\left( x \right)d{\rm{x}}} + \frac{{20}}{3}\)

Do đó \(I = \int\limits_3^6 {f\left( x \right)dx} = \frac{{20}}{3}\).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau: số nghiệm thuộc (ảnh 1)

Số nghiệm thuộc khoảng \[\left( {0;\pi } \right)\] của phương trình \[3f\left( {2 + 2\cos x} \right) - 4 = 0\]

Xem đáp án » 08/09/2022 910

Câu 2:

Cho hình chóp S.ABCD có SA vuông góc với đáy, \[SA = a\sqrt 6 .\] Đáy ABCD là hình thang vuông tại A và \[B,{\mkern 1mu} {\mkern 1mu} AB = BC = \frac{1}{2}AD = a.\] Gọi E là trung điểm AD. Tính bán kính mặt cầu ngoại tiếp hình chóp \[S.ECD\].

Xem đáp án » 08/09/2022 430

Câu 3:

Cho số phức \[z = 1 + 2i\] . Tìm tổng phần thực và phần ảo của số phức \[w = 2z + \bar z\] .

Xem đáp án » 08/09/2022 198

Câu 4:

Cho khối chóp S.ABCD có đáy là hình chữ nhật, \[AB = a\], \[AD = a\sqrt 3 \], SA vuông góc với đáy và mặt phẳng \[\left( {SBC} \right)\] tạo với đáy một góc \[60^\circ \]. Tính thể tích V của khối chóp S.ABCD.

Xem đáp án » 08/09/2022 194

Câu 5:

Tính nguyên hàm \[I = \int {\frac{{x - 5}}{{{x^2} - 1}}{\rm{d}}x} \]

Xem đáp án » 08/09/2022 193

Câu 6:

Gọi S là tập nghiệm của phương trình \[2{\log _2}\left( {2x - 2} \right) + {\log _2}{\left( {x - 3} \right)^2} = 2\] trên \[\mathbb{R}.\] Tổng các phần tử của S bằng

Xem đáp án » 08/09/2022 185

Câu 7:

Cho cấp số cộng có số hạng thứ 3 và số hạng thứ 7 lần lượt là 6 và – 2. Tìm số hạng thứ 5.

Xem đáp án » 08/09/2022 169

Câu 8:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau

Cho hàm số y=f(x) có bảng biến thiên như sau   Bất phương trình (ảnh 1)

Bất phương trình \[\left( {{x^2} + 1} \right)f\left( x \right) \ge m\] có nghiệm trên khoảng \[\left( { - 1;2} \right)\] khi và chỉ khi

Xem đáp án » 08/09/2022 140

Câu 9:

Từ một nhóm có 10 học sinh nam và 15 học sinh nữ. Hỏi có bao nhiêu cách chọn ra 2 học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biễu diễn văn nghệ

Xem đáp án » 08/09/2022 136

Câu 10:

Cho số phức \[z = a + bi\] với \[a,b \in \mathbb{R}\] thỏa mãn \[\left( {1 + 3i} \right)z + \left( {2 + i} \right)\bar z = - 2 + 4i.\] Tính \[P = ab.\]

Xem đáp án » 08/09/2022 136

Câu 11:

Cho \[{\log _a}x = 5,\;{\log _b}x = - 3\] với \[a,b\] là các số thực lớn hơn 1. Tính \[P = {\log _{\frac{{{a^2}}}{b}}}x\]

Xem đáp án » 08/09/2022 133

Câu 12:

Cho đường thẳng Δ đi qua điểm \[M\left( {2;0; - 1} \right)\] và vecto chỉ phương \[\vec a = \left( {4; - 6;2} \right)\]. Phương trình tham số của đường thẳng Δ là

Xem đáp án » 08/09/2022 128

Câu 13:

Cho hai hàm số \[f\left( x \right) = a{x^3} + b{x^2} + cx + 5\] \[g\left( x \right) = d{x^2} + ex + 3\;\left( {a,b,c,d,e \in \mathbb{R}} \right).\] Biết rằng đồ thị của hàm số \[y = f\left( x \right)\]\[y = g\left( x \right)\] cắt nhau tại 3 điểm có hoành độ lần lượt là \[ - 2,\;1,\;4\] (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng

Cho hai hàm số  f(x)=ax^3+bx^2+c+5 và   g(x)=dx^2+ex+3 (ảnh 1)

Xem đáp án » 08/09/2022 128

Câu 14:

Cho \[{\log _a}b = 2\] \[{\log _a}c = 3\]. Tính \[P = {\log _a}\left( {\frac{{{b^3}}}{{{c^2}}}} \right)\].

Xem đáp án » 08/09/2022 127

Câu 15:

Cho hàm số \[f\left( x \right),\] có bảng xét dấu \[f'\left( x \right)\] như sau

Cho hàm số f(x)  có bảng xét dấu f'(x)  như sau   (ảnh 1)

Hàm số \[y = f\left( {{x^2} - 2x} \right)\] đồng biến trên khoảng nào dưới dây

Xem đáp án » 08/09/2022 124

Câu hỏi mới nhất

Xem thêm »
Xem thêm »