Trong khôn gian tọa độ Oxyz, cho mặt cầu \[\left( S \right):\;{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{14}}{3}\] và đường thẳng \[d:\;\frac{{x - 1}}{3} = \frac{{y - 2}}{2} = \frac{{z - 3}}{1}.\] Gọi \[A\left( {{x_0};{y_0};{z_0}} \right)\;\left( {{x_0} > 0} \right)\] là điểm thuộc d sao cho từ A ta kẻ được ba tiếp tuyến đến mặt cầu (S) và các tiếp điểm \[B,\;C,\;D\] sao cho ABCD là tứ diện đều. Tính độ dài đoạn \[OA.\]
Đáp án A
Mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;2;3} \right)\) và bán kính \(R = \sqrt {\frac{{14}}{3}} \)
Vì AB là tiếp tuyến nên \(AB \bot BI\), lại có \(IB = IC = I{\rm{D}} = R\) nên AI là trục đường tròn ngoại tiếp tam giác BCD
Gọi \(H = AI \cap \left( {BC{\rm{D}}} \right)\), đặt \(AB = a = C{\rm{D}} \Rightarrow HB = \frac{{a\sqrt 3 }}{3}\)
\(\sin \widehat {HAB} = \frac{{BH}}{{AB}} = \frac{{\sqrt 3 }}{3}\) mà \(\Delta ABI\) vuông tại B nên
\(AI.\sin \widehat {HBA} = BI = \sqrt {\frac{{14}}{3}} \Rightarrow AI = \sqrt {14} \)
Gọi \(A\left( {1 + 3t;2 + 2t;3 + t} \right)\) ta có \(A{I^2} = 14{t^2} = 14\)
\( \Rightarrow \left[ \begin{array}{l}t = - 1\\t = 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}A\left( { - 2;0;2} \right){\rm{ }}\left( {loai} \right)\\A\left( {4;4;4} \right)\end{array} \right. \Rightarrow OA = 4\sqrt 3 \).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thuộc khoảng \[\left( {0;\pi } \right)\] của phương trình \[3f\left( {2 + 2\cos x} \right) - 4 = 0\] là
Cho hình chóp S.ABCD có SA vuông góc với đáy, \[SA = a\sqrt 6 .\] Đáy ABCD là hình thang vuông tại A và \[B,{\mkern 1mu} {\mkern 1mu} AB = BC = \frac{1}{2}AD = a.\] Gọi E là trung điểm AD. Tính bán kính mặt cầu ngoại tiếp hình chóp \[S.ECD\].
Cho số phức \[z = 1 + 2i\] . Tìm tổng phần thực và phần ảo của số phức \[w = 2z + \bar z\] .
Cho khối chóp S.ABCD có đáy là hình chữ nhật, \[AB = a\], \[AD = a\sqrt 3 \], SA vuông góc với đáy và mặt phẳng \[\left( {SBC} \right)\] tạo với đáy một góc \[60^\circ \]. Tính thể tích V của khối chóp S.ABCD.
Tính nguyên hàm \[I = \int {\frac{{x - 5}}{{{x^2} - 1}}{\rm{d}}x} \]
Gọi S là tập nghiệm của phương trình \[2{\log _2}\left( {2x - 2} \right) + {\log _2}{\left( {x - 3} \right)^2} = 2\] trên \[\mathbb{R}.\] Tổng các phần tử của S bằng
Cho cấp số cộng có số hạng thứ 3 và số hạng thứ 7 lần lượt là 6 và – 2. Tìm số hạng thứ 5.
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau
Bất phương trình \[\left( {{x^2} + 1} \right)f\left( x \right) \ge m\] có nghiệm trên khoảng \[\left( { - 1;2} \right)\] khi và chỉ khi
Cho số phức \[z = a + bi\] với \[a,b \in \mathbb{R}\] thỏa mãn \[\left( {1 + 3i} \right)z + \left( {2 + i} \right)\bar z = - 2 + 4i.\] Tính \[P = ab.\]
Từ một nhóm có 10 học sinh nam và 15 học sinh nữ. Hỏi có bao nhiêu cách chọn ra 2 học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biễu diễn văn nghệ
Cho \[{\log _a}x = 5,\;{\log _b}x = - 3\] với \[a,b\] là các số thực lớn hơn 1. Tính \[P = {\log _{\frac{{{a^2}}}{b}}}x\]
Cho đường thẳng Δ đi qua điểm \[M\left( {2;0; - 1} \right)\] và vecto chỉ phương \[\vec a = \left( {4; - 6;2} \right)\]. Phương trình tham số của đường thẳng Δ là
Cho \[{\log _a}b = 2\] và \[{\log _a}c = 3\]. Tính \[P = {\log _a}\left( {\frac{{{b^3}}}{{{c^2}}}} \right)\].
Cho hai hàm số \[f\left( x \right) = a{x^3} + b{x^2} + cx + 5\] và \[g\left( x \right) = d{x^2} + ex + 3\;\left( {a,b,c,d,e \in \mathbb{R}} \right).\] Biết rằng đồ thị của hàm số \[y = f\left( x \right)\] và \[y = g\left( x \right)\] cắt nhau tại 3 điểm có hoành độ lần lượt là \[ - 2,\;1,\;4\] (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng
Cho hàm số \[f\left( x \right),\] có bảng xét dấu \[f'\left( x \right)\] như sau
Hàm số \[y = f\left( {{x^2} - 2x} \right)\] đồng biến trên khoảng nào dưới dây