Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

18/07/2024 78

Trong khôn gian tọa độ Oxyz, cho mặt cầu \[\left( S \right):\;{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = \frac{{14}}{3}\] và đường thẳng \[d:\;\frac{{x - 1}}{3} = \frac{{y - 2}}{2} = \frac{{z - 3}}{1}.\] Gọi \[A\left( {{x_0};{y_0};{z_0}} \right)\;\left( {{x_0} > 0} \right)\] là điểm thuộc d sao cho từ A ta kẻ được ba tiếp tuyến đến mặt cầu (S) và các tiếp điểm \[B,\;C,\;D\] sao cho ABCD là tứ diện đều. Tính độ dài đoạn \[OA.\]

A. \[OA = 4\sqrt 3 .\]  

Đáp án chính xác

B. \[OA = 2\sqrt 2 .\]  

C. \[OA = 2\sqrt 3 .\]  

D. \[OA = 3.\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Trong khôn gian tọa độ Oxyz, cho mặt cầu (S): (x-1)^2+(y-2)^2+(z-3)^2=14/3 (ảnh 1)

Mặt cầu \(\left( S \right)\) có tâm \(I\left( {1;2;3} \right)\) và bán kính \(R = \sqrt {\frac{{14}}{3}} \)

AB là tiếp tuyến nên \(AB \bot BI\), lại có \(IB = IC = I{\rm{D}} = R\) nên AI là trục đường tròn ngoại tiếp tam giác BCD

Gọi \(H = AI \cap \left( {BC{\rm{D}}} \right)\), đặt \(AB = a = C{\rm{D}} \Rightarrow HB = \frac{{a\sqrt 3 }}{3}\)

\(\sin \widehat {HAB} = \frac{{BH}}{{AB}} = \frac{{\sqrt 3 }}{3}\)\(\Delta ABI\) vuông tại B nên

\(AI.\sin \widehat {HBA} = BI = \sqrt {\frac{{14}}{3}} \Rightarrow AI = \sqrt {14} \)

Gọi \(A\left( {1 + 3t;2 + 2t;3 + t} \right)\) ta có \(A{I^2} = 14{t^2} = 14\)

\( \Rightarrow \left[ \begin{array}{l}t =  - 1\\t = 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}A\left( { - 2;0;2} \right){\rm{ }}\left( {loai} \right)\\A\left( {4;4;4} \right)\end{array} \right. \Rightarrow OA = 4\sqrt 3 \).

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau: số nghiệm thuộc (ảnh 1)

Số nghiệm thuộc khoảng \[\left( {0;\pi } \right)\] của phương trình \[3f\left( {2 + 2\cos x} \right) - 4 = 0\]

Xem đáp án » 08/09/2022 858

Câu 2:

Cho hình chóp S.ABCD có SA vuông góc với đáy, \[SA = a\sqrt 6 .\] Đáy ABCD là hình thang vuông tại A và \[B,{\mkern 1mu} {\mkern 1mu} AB = BC = \frac{1}{2}AD = a.\] Gọi E là trung điểm AD. Tính bán kính mặt cầu ngoại tiếp hình chóp \[S.ECD\].

Xem đáp án » 08/09/2022 425

Câu 3:

Cho số phức \[z = 1 + 2i\] . Tìm tổng phần thực và phần ảo của số phức \[w = 2z + \bar z\] .

Xem đáp án » 08/09/2022 193

Câu 4:

Cho khối chóp S.ABCD có đáy là hình chữ nhật, \[AB = a\], \[AD = a\sqrt 3 \], SA vuông góc với đáy và mặt phẳng \[\left( {SBC} \right)\] tạo với đáy một góc \[60^\circ \]. Tính thể tích V của khối chóp S.ABCD.

Xem đáp án » 08/09/2022 190

Câu 5:

Tính nguyên hàm \[I = \int {\frac{{x - 5}}{{{x^2} - 1}}{\rm{d}}x} \]

Xem đáp án » 08/09/2022 187

Câu 6:

Gọi S là tập nghiệm của phương trình \[2{\log _2}\left( {2x - 2} \right) + {\log _2}{\left( {x - 3} \right)^2} = 2\] trên \[\mathbb{R}.\] Tổng các phần tử của S bằng

Xem đáp án » 08/09/2022 178

Câu 7:

Cho cấp số cộng có số hạng thứ 3 và số hạng thứ 7 lần lượt là 6 và – 2. Tìm số hạng thứ 5.

Xem đáp án » 08/09/2022 164

Câu 8:

Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau

Cho hàm số y=f(x) có bảng biến thiên như sau   Bất phương trình (ảnh 1)

Bất phương trình \[\left( {{x^2} + 1} \right)f\left( x \right) \ge m\] có nghiệm trên khoảng \[\left( { - 1;2} \right)\] khi và chỉ khi

Xem đáp án » 08/09/2022 139

Câu 9:

Cho số phức \[z = a + bi\] với \[a,b \in \mathbb{R}\] thỏa mãn \[\left( {1 + 3i} \right)z + \left( {2 + i} \right)\bar z = - 2 + 4i.\] Tính \[P = ab.\]

Xem đáp án » 08/09/2022 136

Câu 10:

Từ một nhóm có 10 học sinh nam và 15 học sinh nữ. Hỏi có bao nhiêu cách chọn ra 2 học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biễu diễn văn nghệ

Xem đáp án » 08/09/2022 132

Câu 11:

Cho đường thẳng Δ đi qua điểm \[M\left( {2;0; - 1} \right)\] và vecto chỉ phương \[\vec a = \left( {4; - 6;2} \right)\]. Phương trình tham số của đường thẳng Δ là

Xem đáp án » 08/09/2022 126

Câu 12:

Cho \[{\log _a}x = 5,\;{\log _b}x = - 3\] với \[a,b\] là các số thực lớn hơn 1. Tính \[P = {\log _{\frac{{{a^2}}}{b}}}x\]

Xem đáp án » 08/09/2022 126

Câu 13:

Cho hai hàm số \[f\left( x \right) = a{x^3} + b{x^2} + cx + 5\] \[g\left( x \right) = d{x^2} + ex + 3\;\left( {a,b,c,d,e \in \mathbb{R}} \right).\] Biết rằng đồ thị của hàm số \[y = f\left( x \right)\]\[y = g\left( x \right)\] cắt nhau tại 3 điểm có hoành độ lần lượt là \[ - 2,\;1,\;4\] (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng

Cho hai hàm số  f(x)=ax^3+bx^2+c+5 và   g(x)=dx^2+ex+3 (ảnh 1)

Xem đáp án » 08/09/2022 126

Câu 14:

Cho \[{\log _a}b = 2\] \[{\log _a}c = 3\]. Tính \[P = {\log _a}\left( {\frac{{{b^3}}}{{{c^2}}}} \right)\].

Xem đáp án » 08/09/2022 125

Câu 15:

Trong không gian với hệ tọa độ Oxyz  viết phương trình đường thẳng giao tuyến của hai mặt phẳng \[(\alpha ):x + 3y - z + 1 = 0,\] \[(\beta ):2x - y + z - 7 = 0\].

Xem đáp án » 08/09/2022 120

Câu hỏi mới nhất

Xem thêm »
Xem thêm »