Cho hàm số \[f\left( x \right) = 2019\left( {{e^{2x}} - {e^{ - 2x}}} \right) + 2020\ln \left( {x + \sqrt {{x^2} + 1} } \right) + 2021{x^3}\]. Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[f\left( {\left| {3{x^2} + m} \right|} \right) + f\left( {{x^3} - 12} \right) \le 0\] có nghiệm đúng với mọi \[x \in \left[ { - 2;1} \right]\].
Đáp án A
Ta có \(f'\left( x \right) = 4038\left( {{e^{2x}} + {e^{ - 2x}}} \right) + \frac{{2020}}{{\sqrt {{x^2} + 1} }} + 6063{x^2} > 0,\forall x \in \left[ { - 2;1} \right]\)
Mà \(f\left( { - x} \right) = - f\left( x \right)\). Suy ra:
\(f\left( {\left| {3{x^2} + m} \right|} \right) + f\left( {{x^3} - 12} \right) \le 0 \Leftrightarrow f\left( {\left| {3{x^2} + m} \right|} \right) \le - f\left( {{x^3} - 12} \right) = f\left( {12 - {x^3}} \right),\forall x \in \left[ { - 2;1} \right]\)
\( \Leftrightarrow \left| {3{x^2} + m} \right| \le 12 - {x^3} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{3{x^2} + m \ge {x^3} - 12}\\{3{x^2} + m \le 12 - {x^3}}\end{array}} \right.\) ngiệm đúng với mọi \(x \in \left[ { - 2;1} \right]\).
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ge {x^3} - 3{x^2} - 12 = g\left( x \right)}\\{m \le - {x^3} - 3{x^2} + 12 = h\left( x \right)}\end{array}} \right.,\forall x \in \left[ { - 2;1} \right]\]
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m \ge \mathop {{\rm{max}}}\limits_{\left[ { - 2;1} \right]} g\left( x \right) = g\left( 0 \right) = - 12}\\{m \le \mathop {\min }\limits_{\left[ { - 2;1} \right]} h\left( x \right) = h\left( 1 \right) = h\left( { - 2} \right) = 8}\end{array}} \right. \Rightarrow - 12 \le m \le 8\].
Vậy có 21 giá trị nguyên của m thỏa mãn yêu cầu.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số f(x) có bảng biến thiên như sau:
Số nghiệm thuộc khoảng \[\left( {0;\pi } \right)\] của phương trình \[3f\left( {2 + 2\cos x} \right) - 4 = 0\] là
Cho hình chóp S.ABCD có SA vuông góc với đáy, \[SA = a\sqrt 6 .\] Đáy ABCD là hình thang vuông tại A và \[B,{\mkern 1mu} {\mkern 1mu} AB = BC = \frac{1}{2}AD = a.\] Gọi E là trung điểm AD. Tính bán kính mặt cầu ngoại tiếp hình chóp \[S.ECD\].
Cho số phức \[z = 1 + 2i\] . Tìm tổng phần thực và phần ảo của số phức \[w = 2z + \bar z\] .
Cho khối chóp S.ABCD có đáy là hình chữ nhật, \[AB = a\], \[AD = a\sqrt 3 \], SA vuông góc với đáy và mặt phẳng \[\left( {SBC} \right)\] tạo với đáy một góc \[60^\circ \]. Tính thể tích V của khối chóp S.ABCD.
Tính nguyên hàm \[I = \int {\frac{{x - 5}}{{{x^2} - 1}}{\rm{d}}x} \]
Gọi S là tập nghiệm của phương trình \[2{\log _2}\left( {2x - 2} \right) + {\log _2}{\left( {x - 3} \right)^2} = 2\] trên \[\mathbb{R}.\] Tổng các phần tử của S bằng
Cho cấp số cộng có số hạng thứ 3 và số hạng thứ 7 lần lượt là 6 và – 2. Tìm số hạng thứ 5.
Cho hàm số \[y = f\left( x \right)\] có bảng biến thiên như sau
Bất phương trình \[\left( {{x^2} + 1} \right)f\left( x \right) \ge m\] có nghiệm trên khoảng \[\left( { - 1;2} \right)\] khi và chỉ khi
Cho số phức \[z = a + bi\] với \[a,b \in \mathbb{R}\] thỏa mãn \[\left( {1 + 3i} \right)z + \left( {2 + i} \right)\bar z = - 2 + 4i.\] Tính \[P = ab.\]
Từ một nhóm có 10 học sinh nam và 15 học sinh nữ. Hỏi có bao nhiêu cách chọn ra 2 học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biễu diễn văn nghệ
Cho đường thẳng Δ đi qua điểm \[M\left( {2;0; - 1} \right)\] và vecto chỉ phương \[\vec a = \left( {4; - 6;2} \right)\]. Phương trình tham số của đường thẳng Δ là
Cho \[{\log _a}b = 2\] và \[{\log _a}c = 3\]. Tính \[P = {\log _a}\left( {\frac{{{b^3}}}{{{c^2}}}} \right)\].
Cho \[{\log _a}x = 5,\;{\log _b}x = - 3\] với \[a,b\] là các số thực lớn hơn 1. Tính \[P = {\log _{\frac{{{a^2}}}{b}}}x\]
Cho hai hàm số \[f\left( x \right) = a{x^3} + b{x^2} + cx + 5\] và \[g\left( x \right) = d{x^2} + ex + 3\;\left( {a,b,c,d,e \in \mathbb{R}} \right).\] Biết rằng đồ thị của hàm số \[y = f\left( x \right)\] và \[y = g\left( x \right)\] cắt nhau tại 3 điểm có hoành độ lần lượt là \[ - 2,\;1,\;4\] (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng
Cho hàm số \[f\left( x \right),\] có bảng xét dấu \[f'\left( x \right)\] như sau
Hàm số \[y = f\left( {{x^2} - 2x} \right)\] đồng biến trên khoảng nào dưới dây