IMG-LOGO

Câu hỏi:

22/07/2024 162

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại \[B,AB = 3a,BC = 4a\]. Cạnh bên SA vuông góc với mặt phẳng đáy. Góc tạo bởi giữa SC và mặt phẳng đáy bằng \[{60^0}\]. Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng AB và SM bằng:

A. \[a\sqrt 3 .\]           

B. \[\frac{{10a\sqrt 3 }}{{\sqrt {79} }}.\]    

Đáp án chính xác

C. \[5a\sqrt 3 .\]       

D. \[\frac{{5a}}{2}.\]

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án B

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại  (ảnh 1)

Gọi N là trung điểm của BC. Ta có: \(d\left( {AB;SM} \right) = d\left( {A;\left( {SMN} \right).} \right)\)

Dựng đường cao AK trong tam giác AMN, đường cao AH trong tam giác SAK.

Do \(SA \bot \left( {ABC} \right)\) nên \(SA \bot MN\). (1)

Theo cách dựng ta lại có \(MN \bot AK.\) (2)

Từ (1) và (2) \( \Rightarrow MN \bot AH\)\(AH \bot SA\) (theo cách dựng).

\( \Rightarrow AH \bot \left( {SMN} \right)\) tại H nên \(d\left( {AB;SM} \right) = d\left( {A;\left( {SMN} \right)} \right) = AH.\)

Ta có: \(AK = BN = \frac{{BC}}{2} = 2a;AC = 5a.\)

Xét tam giác SAC\(SA = AC.\tan 60^\circ = 5a\sqrt 3 .\)

Xét tam giác SAK vuông tại A với đường cao AH có:

\(\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{K^2}}} = \frac{1}{{75{a^2}}} + \frac{1}{{4{a^2}}} = \frac{{79}}{{300{a^2}}} \Rightarrow A{H^2} = \frac{{300{a^2}}}{{79}} \Rightarrow AH = \frac{{10\sqrt 3 a}}{{\sqrt {79} }}.\)

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho phương trình \[{\log _3}^2\left( {9x} \right) - \left( {m + 5} \right){\log _3}x + 3m - 10 = 0\]. Số giá trị nguyên của tham số m để phương trình đã cho có hai nghiệm phân biệt thuộc \[\left[ {1;81} \right]\]

Xem đáp án » 08/09/2022 481

Câu 2:

Một đa giác lồi có 50 cạnh thì có bao nhiêu đường chéo.

Xem đáp án » 08/09/2022 241

Câu 3:

Cho \[\int\limits_0^3 {f\left( x \right)dx} = 2\]. Tính giá trị của tích phân \[L = \int\limits_0^3 {\left[ {2f\left( x \right) - {x^2}} \right]dx} \].

Xem đáp án » 08/09/2022 202

Câu 4:

Kí hiệu \[{z_1},{z_2},{z_3},{z_4}\] là bốn nghiệm phức của phương trình \[{z^4} + 3{z^2} - 4 = 0.\] Tính tổng \[T = \left| {{z_1}} \right| + {\left| z \right|_2} + \left| {{z_3}} \right| + \left| {{z_4}} \right|.\]

Xem đáp án » 08/09/2022 193

Câu 5:

Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \[{d_1}:\;\frac{{x - 2}}{{ - 1}} = \frac{{y - 1}}{3} = \frac{{z - 1}}{2}\] \[{d_2}:\;\left\{ \begin{array}{l}x = 1 - 3t\\y = - 2 + t\\z = - 1 - t\end{array} \right..\] Phương trình đường thẳng \[\Delta \] nằm trong mặt phẳng \[\left( P \right):\;x + 2y - 3z - 2 = 0\] cắt cả hai đường thẳng \[{d_1}\]\[{d_2}\]

Xem đáp án » 08/09/2022 188

Câu 6:

Bất phương trình \[{4^x} - \left( {m + 1} \right){2^{x + 1}} + m \ge 0\] nghiệm đúng với mọi \[x \ge 0\]. Tập tất cả các giá trị của m là

Xem đáp án » 08/09/2022 175

Câu 7:

Biết \[\int\limits_4^5 {\frac{{dx}}{{{x^2} + 3x + 2}} = a\ln 2 + b\ln 3 + c\ln 5 + d\ln 7} \] với \[a,b,c,d\] là các số nguyên. Tính \[P = ab + cd.\]

Xem đáp án » 08/09/2022 167

Câu 8:

Đồ thị trong hình bên là của hàm số nào sau đây:

Đồ thị trong hình bên là của hàm số nào sau đây:    (ảnh 1)

Xem đáp án » 08/09/2022 146

Câu 9:

Cho hàm số \[f\left( x \right) = 2x + {e^x}\]. Tìm một nguyên hàm \[F\left( x \right)\] của hàm số f(x) thỏa mãn \[F\left( 0 \right) = 2019\].

Xem đáp án » 08/09/2022 145

Câu 10:

Cho cấp số cộng có \[{u_1} = - 3;{u_{10}} = 24\]. Tìm công sai d?

Xem đáp án » 08/09/2022 145

Câu 11:

Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng \[x = 1\]\[x = 4\], biết rằng khi cắt vật thể bởi mặt phẳng tùy ý vuông góc với trục \[Ox\] tại điểm có hoành độ \[x\] (\[1 \le x \le 4\]) thì được thiết diện là một hình lục giác đều có độ dài cạnh là \[2x\].

Xem đáp án » 08/09/2022 142

Câu 12:

Có bao nhiêu số phức z thỏa mãn \[\left| {z - 2 + i} \right| = \left| {z + 1 - 2i} \right|\] \[\left| {z + 4 - 2i} \right| = 3\sqrt 2 ?\]

Xem đáp án » 08/09/2022 142

Câu 13:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \[\left( P \right):x - 2y + 2z - 2 = 0\] và điểm \[I\left( { - 1;2; - 1} \right)\]. Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5.

Xem đáp án » 08/09/2022 141

Câu 14:

Cho hàm số f(x) liên tục trên \[\left[ {0;{\mkern 1mu} 1} \right].\] Biết \[\int\limits_0^1 {\left[ {x.{\mkern 1mu} f'\left( {1 - x} \right) - f\left( x \right)} \right]{\mkern 1mu} {\rm{d}}x} = \frac{1}{2},\] tính \[f\left( 0 \right).\]

Xem đáp án » 08/09/2022 140

Câu 15:

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}\] và có đồ thị \[y = f'\left( x \right)\] như hình vẽ. Đặt \[g\left( x \right) = 2f\left( x \right) - {\left( {x - 1} \right)^2}.\] Khi đó giá trị nhỏ nhất của hàm số \[y = g\left( x \right)\] trên đoạn \[\left[ { - 3;3} \right]\] bằng

Cho hàm số y=f(x)  liên tục trên R  và có đồ thị  y=f'(x) như hình vẽ (ảnh 1)

Xem đáp án » 08/09/2022 140