IMG-LOGO

Câu hỏi:

22/07/2024 92

Biết giá trị lớn nhất của hàm số \[y = f\left( x \right) = \left| {2{x^3} - 15x + m - 5} \right| + 9x\] trên \[\left[ {0;3} \right]\] bằng 60. Tính tổng tất cả các giá trị của tham số thực m.

A. 48.                     

B. 5.                       

C. 6.                       

Đáp án chính xác

D. 62.

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án C

\(\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = 60 \Leftrightarrow f\left( x \right) \le 60,{\rm{ }}\forall x \in \left[ {0;3} \right]\)\(\exists {x_0} \in \left[ {0;3} \right]\) sao cho \(f\left( {{x_0}} \right) = 60\).

\(f\left( x \right) \le 60 \Leftrightarrow \left| {2{x^3} - 15x + m - 5} \right| + 9x \le 60 \Leftrightarrow \left| {2{x^3} - 15x + m - 5} \right| \le 60 - 9x\)

\( \Leftrightarrow 9x - 60 \le 2{x^3} - 15x + m - 5 \le 60 - 9x \Leftrightarrow - 2{x^3} + 24x - 55 \le m \le - 2{x^3} + 6x + 65\)

\( - 2{x^3} + 6x + 65 \ge 29,{\rm{ }}\forall x \in \left[ {0;3} \right]\) nên \(m \le - 2{x^3} + 6x + 65,{\rm{ }}\forall x \in \left[ {0;3} \right] \Leftrightarrow m \le 29\).

Tương tự \( - 2{x^3} + 24x - 55 \le - 23\) nên \( - 2{x^3} + 24x - 55 \le m,{\rm{ }}\forall x \in \left[ {0;3} \right] \Leftrightarrow m \ge - 23\).

Vậy \( - 23 \le m \le 29\) thì \(f\left( x \right) \le 60,{\rm{ }}\forall x \in \left[ {0;3} \right]\).

Đề \(\exists {x_0} \in \left[ {0;3} \right]\) sao cho \(f\left( {{x_0}} \right) = 60\) thì \(\left[ \begin{array}{l} - 2{x^3} + 24x - 55 = m\\ - 2{x^3} + 6x + 65 = m\end{array} \right.\) có nghiệm trên \(\left[ {0;3} \right]\).

Hay \(\left[ \begin{array}{l}m \ge 29\\m \le - 23\end{array} \right.\). Vậy \(\left[ \begin{array}{l}m = 29\\m = - 23\end{array} \right.\) thì \(\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = 60\).

Khi đó tổng các giá trị của m là 29 – 23 = 6.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):2x + 2y - z + 9 = 0\] và điểm \[A\left( {1;2; - 3} \right).\] Đường thẳng d đi qua A và có vectơ chỉ phương \[\vec u = \left( {3;4; - 4} \right)\] cắt (P) tại B. Điểm M thay đổi trên (P) sao cho M luôn nhìn đoạn AB dưới một góc \[{90^0}\]. Độ dài đoạn MB lớn nhất bằng

Xem đáp án » 08/09/2022 229

Câu 2:

Cho hàm số \[y = f\left( x \right)\] là hàm số bậc ba có bảng biến thiên như hình vẽ

Cho hàm số y=f(x) là hàm số bậc ba có bảng biến thiên như hình vẽ   (ảnh 1)

Số đường tiệm cận đứng và ngang của đồ thị hàm số \[y = \frac{{2x + 7 - 3\sqrt {4x + 5} }}{{\left| {f\left( x \right)} \right| - 2}}\]

Xem đáp án » 08/09/2022 202

Câu 3:

Một chất điểm đang chuyển động với vận tốc \[{v_0} = 15{\mkern 1mu} m/s\] thì tăng tốc với gia tốc \[a\left( t \right) = {t^2} + 4t{\mkern 1mu} \left( {m/{s^2}} \right).\] Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3 giây kể từ lúc bắt đầu tăng vận tốc.

Xem đáp án » 08/09/2022 175

Câu 4:

Cho hàm số \[y = f\left( x \right)\] có bảng xét dấu của đạo hàm như sau.

Cho hàm số y=f(x)  có bảng xét dấu của đạo hàm như sau.   (ảnh 1)

Hàm số \[y = f\left( {x - 1} \right) + {x^3} - 12x + 2019\] nghịch biến trên khoảng nào dưới đây?

Xem đáp án » 08/09/2022 165

Câu 5:

Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC, với \[A\left( {1;2;1} \right),B\left( { - 3;0;3} \right),C\left( {2;4; - 1} \right).\]  Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

Xem đáp án » 08/09/2022 164

Câu 6:

Cho hình lập phương \[ABCD.A'B'C'D'\] có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:

Xem đáp án » 08/09/2022 149

Câu 7:

Cho tích phân \[I = \int\limits_0^4 {f\left( x \right)dx} = 32.\] Tính tích phân \[J = \int\limits_0^2 {f\left( {2x} \right)dx} \].

Xem đáp án » 08/09/2022 141

Câu 8:

Cho số phức z thỏa mãn \[(2 + 3i)z + 4 - 3i = 13 + 4i\]. Môđun của z bằng

Xem đáp án » 08/09/2022 139

Câu 9:

Trong không gian Oxyz, cho mặt cầu \[(S):{(x + 2)^2} + {(y - 1)^2} + {(z + \sqrt 2 )^2} = 9\] và hai điểm \[A( - 2;0; - 2\sqrt 2 ),B( - 4; - 4;0)\]. Biết rằng tập hợp các điểm M thuộc \[(S)\] sao cho \[M{A^2} + \overrightarrow {MO} .\overrightarrow {MB} = 16\] là một đường tròn. Bán kính của đường tròn đó bằng

Xem đáp án » 08/09/2022 139

Câu 10:

Trong không gian Oxyz, cho \[A\left( {1;3;5} \right)\], \[B\left( { - 5; - 3; - 1} \right)\]. Phương trình mặt cầu đường kính AB là:

Xem đáp án » 08/09/2022 137

Câu 11:

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật \[AB = a\], \[AD = 2a\], cạnh bên SA vuông góc với đáy và thể tích khối chóp S.ABCD bằng \[\frac{{2{a^3}}}{3}\] . Tính góc tạo bởi đường thẳng SB với mặt phẳng \[\left( {ABCD} \right)\].

Xem đáp án » 08/09/2022 136

Câu 12:

Cho hình lập phương \[ABCD.A'B'C'D'\] cạnh a. Gọi M, N lần lượt là trung điểm của cạnh \[A'B'\] và BC. Mặt phẳng (DMN) chia khối lập phương thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnhA và \[(H')\] là khối đa diện còn lại. Tính tỉ số \[\frac{{{V_{(H)}}}}{{{V_{(H')}}}}.\]

Xem đáp án » 08/09/2022 131

Câu 13:

Tìm họ nguyên hàm của hàm số \[y = {x^2} - {3^x} + \frac{1}{x}.\]

Xem đáp án » 08/09/2022 130

Câu 14:

Dãy số nào sau đây là cấp số cộng?

Xem đáp án » 08/09/2022 125

Câu 15:

Với các số thực \[a,b > 0,a \ne 1\]  tùy ý, biểu thức \[{\log _{{a^2}}}\left( {a{b^2}} \right)\] bằng:

Xem đáp án » 08/09/2022 124

Câu hỏi mới nhất

Xem thêm »
Xem thêm »