Cho hàm số f(x) liên tục trên đoạn \[\left[ {0;\frac{\pi }{3}} \right]\]. Biết \[f'\left( x \right).\cos x + f\left( x \right).\sin x = 1\] với \[\forall x \in \left[ {0;\frac{\pi }{3}} \right]\] và \[f\left( 0 \right) = 1.\] Tính \[I = \int\limits_0^{\frac{\pi }{3}} {f\left( x \right)dx} .\]
Đáp án A
Ta có \[{\left[ {\frac{{f\left( x \right)}}{{\cos x}}} \right]^'} = \frac{{f'\left( x \right).\cos x + f\left( x \right).\sin x}}{{{{\cos }^2}x}} = \frac{1}{{{{\cos }^2}x}}\].
\[ \Rightarrow \frac{{f\left( x \right)}}{{\cos x}} = \int {\frac{1}{{{{\cos }^2}x}}dx} = \tan x + C\].
Mà \[f\left( 0 \right) = 1 \Rightarrow C = 1 \Rightarrow f\left( x \right) = \cos x\left( {\tan x + 1} \right) = \sin x + \cos x\]
\[ \Rightarrow I = \int\limits_0^{\frac{\pi }{3}} {\left( {\sin x + \cos x} \right)dx} = \left( { - \cos x + \sin x} \right)\left| \begin{array}{l}^{\frac{\pi }{3}}\\_0\end{array} \right. = \frac{{1 + \sqrt 3 }}{2}\].
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số \[y = {\left| x \right|^3} - 3m{x^2} + 3\left( {5 - m} \right)\left| x \right| - 2{m^2} + 1.\] Có bao nhiêu giá trị nguyên của tham số m để hàm số đã cho có đúng 5 điểm cực trị?
Trong không gian Oxyz, viết phương trình đường thẳng d đi qua điểm \[A\left( {1; - 1;3} \right)\], song song với mặt phẳng \[\left( P \right):x + 4y - 2z + 1 = 0\] và cắt đường thẳng \[d':\frac{{x - 2}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{1}.\]
Từ một tấm tôn dạng hình tam giác vuông với hai cạnh góc vuông bằng \[3m\] và \[4m,\] một anh thợ cần cắt một tấm tôn có dạng hình chữ nhật nội tiếp tam giác trên. Anh ta gò tấm tôn hình chữ nhật này thành một hình trụ không đáy (như hình vẽ) để đổ thóc vào trong. Thể tích lớn nhất của khối trụ thu được gần nhất với kết quả nào dưới đây?
Trong không gian Oxyz, cho hai điểm \[B\left( {2;{\mkern 1mu} - 1;{\mkern 1mu} - 3} \right)\], \[C\left( { - 6;{\mkern 1mu} - 1;{\mkern 1mu} {\mkern 1mu} 3} \right)\]. Trong các tam giác ABC thỏa mãn các đường trung tuyến kẻ từ B và C vuông góc với nhau, điểm \[A\left( {a;b;0} \right)\], (\[b > 0\]) sao cho giá trị của \[\cos A\] nhỏ nhất. Tính \[a + b.\]
Cho hàm số \[y = {x^3} - 6{x^2} + mx + 1\]. Có bao nhiêu giá trị nguyên thuộc đoạn \[\left[ {6;12} \right]\] của tham số m để hàm số đồng biến trên khoảng \[\left( {0; + \infty } \right)\].
Cho hình phẳng (H) giới hạn bởi đồ thị của hai hàm số \[y = {f_1}\left( x \right)\], \[y = {f_2}\left( x \right)\] liên tục trên đoạn \[\left[ {a;\;b} \right]\] và hai đường thẳng \[x = a\], \[x = b\] (như hình vẽ). Cho (H) quay quanh trục hoành, thể tích của khối tròn xoay tạo thành được tính theo công thức nào dưới đây?
Trong không gian, cho hình trụ (T) có bán kính đáy bằng 5cm. Mặt phẳng (α) song song với trục của (T), cắt (T) theo thiết diện (D) là một hình vuông. Khoảng cách từ trục của (T) đến mặt phẳng chứa (D) bằng 3cm. Tính diện tích của thiết diện (D).
Cho \[\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\] Tích phân \[\int\limits_0^{\frac{\pi }{2}} {\left[ {\sin x + f\left( x \right)} \right]dx} \] bằng
Trong không gian Oxyz, cho đường thẳng \[d:\left\{ {\begin{array}{*{20}{l}}{x = 2 + t}\\{y = - 1}\\{z = 3 + 2t}\end{array}} \right.\left( {t \in \mathbb{R}} \right).\] Vectơ nào dưới đây là một vectơ chỉ phương của d?
Cho hàm số \[f\left( x \right)\] có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Cho các hàm số \[y = {\log _a}x\] và \[y = {\log _b}x\] có đồ thị như hình vẽ. Đường thẳng \[x = 5\] cắt trục hoành, đồ thị hàm số \[y = {\log _a}x\] và \[y = {\log _b}x\] lần lượt tại các điểm \[A,{\rm{ }}B,{\rm{ }}C.\] Biết rằng \[BC = 2AB.\] Mệnh đề nào sau đây là đúng?
Xét \[x,y\] là hai số thực dương thỏa \[1 - \frac{1}{2}{\log _2}\left( {x - y + 2} \right) = {\log _2}\left( {\frac{{x + 1}}{y} + 1} \right).\] Tìm giá trị nhỏ nhất của biểu thức \[P = \frac{{x\left( {y + 1} \right) + 10}}{y}.\]
Cho phương trình \[\left( {\sqrt x + \sqrt {x - 1} } \right)\left( {m\sqrt x + \frac{1}{{\sqrt {x - 1} }} + 16\sqrt[4]{{{x^2} - x}}} \right) = 1.\] Có bao nhiêu giá trị nguyên của tham số m để phương trình đã cho có đúng hai nghiệm thực phân biệt?
Trong không gian Oxyz, cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 4\] và điểm \[M\left( {2;{\mkern 1mu} 3;{\mkern 1mu} 1} \right)\]. Từ M kẻ được vô số các tiếp tuyến tới (S), biết tập hợp các tiếp điểm là đường tròn (C). Tính bán kính r của đường tròn (C).