Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): . Tìm tọa độ điểm , biết rằng ba mặt phẳng phân biệt đi qua A đôi một vuông góc với nhau và cắt mặt cầu (S) theo thiết diện là ba đường tròn có tổng diện tích bằng 11π.
A.
B.
C.
D.
Đáp án D
Gọi thuộc Oy
Thực hiện phép tịnh tiến theo biến đổi hệ tọa độ Oxyz thành AXYZ.
Công thức đổi trục
Xét bài toán trong hệ tọa độ AXYZ
Phương trình mặt cầu có tâm và
Ba mặt phẳng vuông góc nhau từng đôi một và đi qua A là ba mặt phẳng tọa độ: AXY, AYZ, AZX.
Mặt khác theo đề
Vậy cần tìm.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số y = f(x) liên tục trên và có đạo hàm với mọi . Có bao nhiêu số nguyên m thuộc đoạn [-2019;2019] để hàm số nghịch biến trên khoảng ?
Cho hình chóp S.ABC có SA, AB, AC đôi một vuông góc, AB = a, và diện tích tam giác SBC bằng . Khoảng cách từ điểm A đến măt phẳng (SBC) bằng
Cho các số phức z và w thỏa mãn . Biết rằng tập hợp các điểm biểu diễn các số phức w là một đường tròn có tâm I. Tọa độ của điểm I là
Cho hàm số (với a, b, c, d là các số thực) có đồ thị hàm số f'(x) như hình vẽ. Biết rằng giá trị lớn nhất của hàm số y = f (x) trên đoạn [-3;-2] bằng 7. Giá trị f(2) bằng
Một bữa tiệc có 13 người, lúc ra về mỗi người đều bắt tay người khác một lần, riêng chủ bữa tiệc chỉ bắt tay ba người. Hỏi có bao nhiêu cái bắt tay?
Cho hình lăng trụ ABC.A'B'C' có mặt đáy là tam giác đều cạnh AB = 2a. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của cạnh AB. Biết góc giữa cạnh bên và mặt đáy bằng . Tang góc giữa hai mặt phẳng (BCC'B') và (ABC) bằng
Cho hàm số y = f(x) có đạo hàm liên tục trên . Biết f(0) = 0 và đồ thị hàm số y = f'(x) có đồ thị như hình vẽ dưới. Phương trình , với m là tham số có nhiều nhất là bao nhiêu nghiệm?
Cho hàm số y = f(x) là hàm đa thức bậc bốn có f(3) < 0, đồ thị hàm số y = f’(x) như hình vẽ.
Số điểm cực trị của hàm số là:
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên dưới
Hàm số g(x) = f (x +1) đạt cực tiểu tại
Cho hàm số y = f (x) liên tục trên đoạn [-3;2] và có bảng biến thiên như sau:
Giá trị nhỏ nhất của hàm số trên đoạn [-1;2] bằng