Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 2a. góc giữa cạnh bên và mặt đáy bằng Tính thể tích của khối nón có đỉnh là S và đáy là đường tròn ngoại tiếp
A.
B.
C.
D.
Phương pháp giải:
- Xác định góc giữa cạnh bên và mặt đáy là góc giữa cạnh bên và hình chiếu của cạnh bên trên mặt đáy.
- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính chiều cao khối chóp, cũng chính là chiều cao hình nón.
- Sử dụng công thức tính thể tích khối nón có chiều cao h, bán kính đáy là .
Giải chi tiết:
Gọi O là trọng tâm và O cũng chính là tâm đường tròn ngoại tiếp tam giác ABC.
Ta có là hình chiếu vuông góc của SA lên (ABC).
.
Xét vuông tại có .
Vậy khối nón có đỉnh S và đáy là đường tròn ngoại tiếp có thể tích là
.
Đáp án A.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tìm tập hợp tất cả các giá trị của tham số m để hàm số có tập xác định là \[\mathbb{R}\].
Tìm tất cả các giá trị của tham số m để đồ thị hàm số có tiệm cận đứng.
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:
Cho hình chóp \[S.ABCD\] có đáy là hình vuông tâm O, cạnh a, SO vuông góc với mặt phẳng \[\left( {ABCD} \right)\] và SO=a. Khoảng cách giữa SC và AB bằng:
Cho dãy số \[\left( {{u_n}} \right)\] là cấp số nhân có số hạng đầu , công bội . Tổng ba số hạng đầu của cấp số nhân là:
Cho hàm số y=f(x) có đạo hàm trên R. Mệnh đề nào dưới đây là đúng?
Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số có 7 điểm cực trị. Tính tổng các phần tử của S.
Cho hình chóp \[S.ABC\] có cạnh SA vuông góc với mặt phẳng \[\left( {ABC} \right),\] biết Tính góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và (SAC).
Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?
Cho hàm số , có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn tạo thành một dây cung có độ dài nhỏ nhất.
Cho mặt cầu S(O;r). mặt phẳng (P) cách tâm O một khoảng bằng cắt mặt cầu \[\left( S \right)\] theo giao tuyến là một đường tròn. Hãy tính theo r chu vi của đường tròn là giao tuyến của mặt phẳng (P) và mặt cầu (S).