IMG-LOGO

Câu hỏi:

06/07/2024 144

Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình vuông A'B'C'D' và M là điểm thuộc đoạn thẳng OI sao cho MO=2MI. Khi đó côsin của góc tạo bởi hai mặt phẳng (MC'D') và (MAB) bằng:

A.68585

B.61365

C.\[\frac{{7\sqrt {85} }}{{85}}\]

Đáp án chính xác

D.171365

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Phương pháp giải:

- Sử dụng định lí: Góc giữa hai mặt phẳng là giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Xác định góc giữa hai mặt phẳng, sử dụng định lí Pytago và định lí Côsin trong tam giác để tính góc.

Giải chi tiết:

 (VD): Cho hình lập phương có tâm O. Gọi I là tâm hình vuông và M là điểm thuộc đoạn thẳng sao cho . Khi đó côsin của góc tạo bởi hai mặt phẳng và bằng:  (ảnh 7)

Gọi E,F lần lượt là trung điểm của C'D',AB.

Xét ΔMIC'ΔMID' có MI chung, Ic'=Id' nên ΔMIC'=ΔMID'(2 cạnh góc vuông)

MC'=MD'ΔMC'D'cân tại E MEC'D'.

Chứng minh tương tự ta có MFAB.

Xét (MC'D') và (MAB) có M chung, {C'D'(MC'D')AB(MAB)C'D'//AB

(MC'D')(MAB)=Mx//C'D'//AB.

Lại có {MEC'D'MFAB(cmt){MEMxMFMx.

Ta có: \[\left\{ {\begin{array}{*{20}{l}}{\left( {MC'D'} \right) \cap \left( {MAB} \right) = Mx}\\{ME \subset \left( {MC'D'} \right),{\mkern 1mu} {\mkern 1mu} ME \bot Mx}\\{MF \subset \left( {MAB} \right),{\mkern 1mu} {\mkern 1mu} MF \bot Mx}\end{array}} \right.\]

((MC'D');(MAB))=(ME;MF).

Giả sử ABCD.A'B'C'D' là khối lập phương có cạnh bằng 1.

Ta có MO=2MIMI=13OI=16.

Áp dụng định lí Pytago ta có: MC'=MI2+IC'2=(16)2+(22)2=196

ME=MC'2EC'2=(196)2(12)2=106

Tương tự ta có MB=MJ2+JB2=(56)2+(22)2=436

MF=MB2BF2=346

Dễ thấy BC'EF là hình bình hành nên EF=BC'=2.

Áp dụng định lí Côsin trong tam giác MEF ta có:

cosEMF=ME2+MF2EF22ME.MF=(106)2+(346)2(2)22.106.346=78585

Mà góc giữa hai mặt phẳng là góc nhọn, có giá trị côsin là số dương.

Vậy cos((MC'D');(MAB))=78585.

Đáp án C.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=1log3(x22x+3m)có tập xác định là \[\mathbb{R}\].

Xem đáp án » 08/09/2022 315

Câu 2:

Thể tích khối cầu có bán kính r là:

Xem đáp án » 08/09/2022 258

Câu 3:

Tìm tất cả các giá trị của tham số m để đồ thị hàm số y=2x4xm có tiệm cận đứng.

Xem đáp án » 08/09/2022 227

Câu 4:

Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số y=x33x2 tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.

Xem đáp án » 08/09/2022 223

Câu 5:

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên m[2021;2021] để hàm số g(x)=f(x+m) nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?

 (VD): Cho hàm số có đạo hàm liên tục trên . Biết hàm số có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng . Hỏi có bao nhiêu phần tử? (ảnh 8)

Xem đáp án » 08/09/2022 222

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:

Xem đáp án » 08/09/2022 210

Câu 7:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông tâm O, cạnh a, SO vuông góc với mặt phẳng \[\left( {ABCD} \right)\] và SO=a. Khoảng cách giữa SC và AB bằng:

Xem đáp án » 08/09/2022 197

Câu 8:

Cho dãy số \[\left( {{u_n}} \right)\] là cấp số nhân có số hạng đầu u1=1, công bội q=2. Tổng ba số hạng đầu của cấp số nhân là:

Xem đáp án » 08/09/2022 192

Câu 9:

Tìm tập nghiệm S của phương trình (20202021)4x=(20212020)2x6.

Xem đáp án » 08/09/2022 189

Câu 10:

Cho hàm số y=f(x) có đạo hàm trên R. Mệnh đề nào dưới đây là đúng?

Xem đáp án » 08/09/2022 180

Câu 11:

Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số y=|3x48x36x2+24xm|có 7 điểm cực trị. Tính tổng các phần tử của S.

Xem đáp án » 08/09/2022 179

Câu 12:

Cho hình chóp \[S.ABC\] có cạnh SA vuông góc với mặt phẳng \[\left( {ABC} \right),\] biết AB=AC=a,BC=a3.Tính góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và (SAC).

Xem đáp án » 08/09/2022 175

Câu 13:

Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?

 (NB): Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây? (ảnh 1)

Xem đáp án » 08/09/2022 170

Câu 14:

Cho hàm số y=x42mx2+m, có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn (γ):(x1)2+(y1)2=4 tạo thành một dây cung có độ dài nhỏ nhất.

Xem đáp án » 08/09/2022 168

Câu 15:

Cho mặt cầu S(O;r). mặt phẳng (P) cách tâm O một khoảng bằng r2 cắt mặt cầu \[\left( S \right)\] theo giao tuyến là một đường tròn. Hãy tính theo r chu vi của đường tròn là giao tuyến của mặt phẳng (P) và mặt cầu (S).

Xem đáp án » 08/09/2022 166

Câu hỏi mới nhất

Xem thêm »
Xem thêm »