Ông X muốn xây một bình chứa hình trụ có thể tích . Đáy làm bằng bêtông giá 100 nghìn đồng/, thành làm bằng tôn giá 90 nghìn đồng/, nắp bằng nhôm giá 140 nghìn đồng/. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?
A.
B.
C.
Phương pháp giải:
- Gọi bán kính đáy và chiều cao của hình trụ lần lượt là . Từ thể tích của hình trụ rút h theo r.
- Tính diện tích xung quanh và diện tích đáy, diện tích nắp của hình trụ.
- Dựa vào giá tiền từng bộ phận đề bài đã cho, tính tổng chi phí.
- Sử dụng BĐT Cô-si cho 3 số không âm a,b,c : . Dấu “=” xảy ra khi và chỉ khi a=b=c để tìm chi phí nhỏ nhất, từ đó tìm được r.
Giải chi tiết:
Gọi bán kính đáy và chiều cao của hình trụ lần lượt là .
Vì thể tích hình trụ là nên ta có .
Diện tích thành (diện tích xung quanh) hình trụ là .
Diện tích đáy và nắp hình trụ là .
Chi phí là: (nghìn đồng).
Áp dụng BĐT Cô-si ta có: .
Dấu “=” xảy ra .
Vậy chi phí thấp nhất đạt được khi bán kính đáy hình trụ là .
Đáp án B.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tìm tập hợp tất cả các giá trị của tham số m để hàm số có tập xác định là \[\mathbb{R}\].
Tìm tất cả các giá trị của tham số m để đồ thị hàm số có tiệm cận đứng.
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:
Cho hình chóp \[S.ABCD\] có đáy là hình vuông tâm O, cạnh a, SO vuông góc với mặt phẳng \[\left( {ABCD} \right)\] và SO=a. Khoảng cách giữa SC và AB bằng:
Cho dãy số \[\left( {{u_n}} \right)\] là cấp số nhân có số hạng đầu , công bội . Tổng ba số hạng đầu của cấp số nhân là:
Cho hàm số y=f(x) có đạo hàm trên R. Mệnh đề nào dưới đây là đúng?
Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số có 7 điểm cực trị. Tính tổng các phần tử của S.
Cho hình chóp \[S.ABC\] có cạnh SA vuông góc với mặt phẳng \[\left( {ABC} \right),\] biết Tính góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và (SAC).
Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?
Cho hàm số , có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn tạo thành một dây cung có độ dài nhỏ nhất.
Cho mặt cầu S(O;r). mặt phẳng (P) cách tâm O một khoảng bằng cắt mặt cầu \[\left( S \right)\] theo giao tuyến là một đường tròn. Hãy tính theo r chu vi của đường tròn là giao tuyến của mặt phẳng (P) và mặt cầu (S).