IMG-LOGO

Câu hỏi:

08/09/2022 116

Ông X muốn xây một bình chứa hình trụ có thể tích 72m3. Đáy làm bằng bêtông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?

A.3332π3(m)

B.3π3(m)

Đáp án chính xác

C.2π3(m)

D.3π3(m)

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Phương pháp giải:

- Gọi bán kính đáy và chiều cao của hình trụ lần lượt là r,h(m)(r,h>0). Từ thể tích của hình trụ rút h theo r.

- Tính diện tích xung quanh và diện tích đáy, diện tích nắp của hình trụ.

- Dựa vào giá tiền từng bộ phận đề bài đã cho, tính tổng chi phí.

- Sử dụng BĐT Cô-si cho 3 số không âm a,b,c : a+b+c3abc3. Dấu “=” xảy ra khi và chỉ khi a=b=c để tìm chi phí nhỏ nhất, từ đó tìm được r.

Giải chi tiết:

Gọi bán kính đáy và chiều cao của hình trụ lần lượt là r,h(m)(r,h>0).

Vì thể tích hình trụ là 72m3nên ta có πr2h=72h=72πr2.

Diện tích thành (diện tích xung quanh) hình trụ là 2πrh=2πr.72πr2=144r(m2).

Diện tích đáy và nắp hình trụ là πr2(m2).

Chi phí là: 90.144r+100πr2+140πr2=240(54r+πr2)(nghìn đồng).

Áp dụng BĐT Cô-si ta có: 54r+πr2=27r+27r+πr2327r+27r+πr23=27π3.

Dấu “=” xảy ra 27r=πr2r3=27πr=3π3(m).

Vậy chi phí thấp nhất đạt được khi bán kính đáy hình trụ là 3π3(m).

Đáp án B.

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 200k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=1log3(x22x+3m)có tập xác định là \[\mathbb{R}\].

Xem đáp án » 08/09/2022 271

Câu 2:

Thể tích khối cầu có bán kính r là:

Xem đáp án » 08/09/2022 220

Câu 3:

Tìm tất cả các giá trị của tham số m để đồ thị hàm số y=2x4xm có tiệm cận đứng.

Xem đáp án » 08/09/2022 193

Câu 4:

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên m[2021;2021] để hàm số g(x)=f(x+m) nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?

 (VD): Cho hàm số có đạo hàm liên tục trên . Biết hàm số có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng . Hỏi có bao nhiêu phần tử? (ảnh 8)

Xem đáp án » 08/09/2022 188

Câu 5:

Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số y=x33x2 tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.

Xem đáp án » 08/09/2022 187

Câu 6:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:

Xem đáp án » 08/09/2022 174

Câu 7:

Cho hình chóp \[S.ABCD\] có đáy là hình vuông tâm O, cạnh a, SO vuông góc với mặt phẳng \[\left( {ABCD} \right)\] và SO=a. Khoảng cách giữa SC và AB bằng:

Xem đáp án » 08/09/2022 164

Câu 8:

Tìm tập nghiệm S của phương trình (20202021)4x=(20212020)2x6.

Xem đáp án » 08/09/2022 162

Câu 9:

Cho dãy số \[\left( {{u_n}} \right)\] là cấp số nhân có số hạng đầu u1=1, công bội q=2. Tổng ba số hạng đầu của cấp số nhân là:

Xem đáp án » 08/09/2022 154

Câu 10:

Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số y=|3x48x36x2+24xm|có 7 điểm cực trị. Tính tổng các phần tử của S.

Xem đáp án » 08/09/2022 150

Câu 11:

Cho hàm số y=f(x) có đạo hàm trên R. Mệnh đề nào dưới đây là đúng?

Xem đáp án » 08/09/2022 149

Câu 12:

Cho hình chóp \[S.ABC\] có cạnh SA vuông góc với mặt phẳng \[\left( {ABC} \right),\] biết AB=AC=a,BC=a3.Tính góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và (SAC).

Xem đáp án » 08/09/2022 145

Câu 13:

Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?

 (NB): Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây? (ảnh 1)

Xem đáp án » 08/09/2022 142

Câu 14:

Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi M,N lần lượt là trung điểm của các cạnh AB,A'C'. P là điểm trên cạnh BB' sao cho PB=2PB'. Thể tích của khối tứ diện OMNP bằng:

Xem đáp án » 08/09/2022 139

Câu 15:

Cho hàm số y=x42mx2+m, có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn (γ):(x1)2+(y1)2=4 tạo thành một dây cung có độ dài nhỏ nhất.

Xem đáp án » 08/09/2022 138

Câu hỏi mới nhất

Xem thêm »
Xem thêm »