Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1m và 1,2m. Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích bằng tổng của hai bể nước trên. Bán kính đáy của bể dự định làm gần nhấtvới kết quả nào dưới đây?
A.2,12m
B.1,65m
C.1,75m
D.1,56m
Phương pháp giải:
- Sử dụng công thức tính thể tích khối trụ có chiều cao h, bán kính đáy r là .
- Tính thể tích từng khối trụ ban đầu và khối trụ mới dự định làm, sử dụng giả thiết bể nước mới có thể tích bằng tổng thể tích bằng tổng của hai bể nước trên, lập phương trình và giải tìm bán kính của bể nước mới.
Giải chi tiết:
Gọi chiều cao của các bể nước hình trụ cùng bằng nhau và bằng h.
+ Thể tích bể nước có bán kính là: .
+ Thể tích bể nước có bán kính là: .
+ Thể tích bể nước lúc sau có bán kính r là .
Theo bài ra ta có .
Vậy bán kính của bể nước dự định làm gần nhất với 1,56m.
Đáp án D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Tìm tập hợp tất cả các giá trị của tham số m để hàm số có tập xác định là \[\mathbb{R}\].
Tìm tất cả các giá trị của tham số m để đồ thị hàm số có tiệm cận đứng.
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:
Cho hình chóp \[S.ABCD\] có đáy là hình vuông tâm O, cạnh a, SO vuông góc với mặt phẳng \[\left( {ABCD} \right)\] và SO=a. Khoảng cách giữa SC và AB bằng:
Cho dãy số \[\left( {{u_n}} \right)\] là cấp số nhân có số hạng đầu , công bội . Tổng ba số hạng đầu của cấp số nhân là:
Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số có 7 điểm cực trị. Tính tổng các phần tử của S.
Cho hàm số y=f(x) có đạo hàm trên R. Mệnh đề nào dưới đây là đúng?
Cho hình chóp \[S.ABC\] có cạnh SA vuông góc với mặt phẳng \[\left( {ABC} \right),\] biết Tính góc giữa hai mặt phẳng \[\left( {SAB} \right)\] và (SAC).
Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?
Cho hàm số , có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn tạo thành một dây cung có độ dài nhỏ nhất.
Cho mặt cầu S(O;r). mặt phẳng (P) cách tâm O một khoảng bằng cắt mặt cầu \[\left( S \right)\] theo giao tuyến là một đường tròn. Hãy tính theo r chu vi của đường tròn là giao tuyến của mặt phẳng (P) và mặt cầu (S).