a) Tìm số tự nhiên k để 3.k là số nguyên tố.
b) Tìm số tự nhiên k để 7.k là số nguyên tố.
a)
Nếu k = 0 thì 3k = 0, không là số nguyên tố
Nếu k = 1 thì 3k = 3 là một số nguyên tố
Nếu k >1, ta có 3.k chia hết cho 3 và k, do đó nó có ít nhất 3 ước là 1; 3; 3.k nên không là số nguyên tố.
Vậy k = 1 thì 3k là số nguyên tố.
b)
Nếu k = 0 thì 7k = 0, không là số nguyên tố
Nếu k = 1 thì 7k = 7 là một số nguyên tố
Nếu k > 1, ta có 7.k chia hết cho 7 và k, do đó nó có ít nhất 3 ước là 1; 7; 7.k nên không là số nguyên tố.
Vậy k = 1 thì 7k là số nguyên tố.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Phân tích các số sau ra thừa số nguyên tố bằng hai cách “theo cột dọc” và dùng “sơ đồ cây”:
a) 154;
b) 187;
c) 630.
Phân tích các số sau ra thừa số nguyên tố rồi tìm tập hợp các ước của mỗi số đó:
a) 38;
b) 75;
c) 100.
a) Điền “Đ” (đúng), “S”(sai) vào các ô trống cho mỗi kết luận trong bảng sau:
Kết luận |
Đáp số |
i. Mỗi số chẵn lớn hơn 2 đều là hợp số. |
|
ii. Tổng của hai số nguyên tố lớn hơn 2 luôn là một hợp số |
|
iii. Tổng của hai hợp số luôn là một hợp số. |
|
iv. Tích của hai số nguyên tố có thể là một số chẵn |
|
b) Với mỗi kết luận sai trong câu a, hãy cho ví dụ minh hoạ.
Gọi P là tập hợp các số nguyên tố.
Điền kí hiệu ∈, ∉ thích hợp vào chỗ chấm.
41 … P;
57 … P;
83 … P;
95 … P.
a) Viết mỗi số sau thành tổng của hai số nguyên tố: 16; 18; 20.
b) Viết 15 thành tổng của 3 số nguyên tố.
Thay chữ số thích hợp vào dấu * để được mỗi số sau là:
a) Hợp số
b) Số nguyên tố
Bác Tâm xếp 360 quả trứng vào các khay đựng như Hình 1 và Hình 2 để mang ra chợ bán. Nếu chỉ dùng một loại khay đựng để xếp thì trong mỗi trường hợp, bác Tâm cần bao nhiêu khay để đựng hết số trứng trên?
Dùng bảng nguyên tố tìm các số nguyên tố trong các số sau:
117; 131; 313; 469; 647.