Cho hình nón đỉnh \(S,\) đường cao \(SO,A\) và \(B\) là hai điểm thuộc đường tròn đáy sao cho khoảng cách từ \(O\) đến mặt phẳng \(\left( {SAB} \right)\) bằng \(\frac{{a\sqrt 3 }}{3}\) và \(\widehat {SAO} = {30^0},\widehat {SAB} = {60^0}.\) Tính độ dài đường sinh của hình nón theo \(a.\)
A.\(a\sqrt 3 .\)
B.\(2a\sqrt 3 .\)
C.\(a\sqrt 5 .\)
D. \(a\sqrt 2 .\)
Gọi \(H\) là trung điểm của \(AB.\)
Tam giác \(OAB\) là tam giác cân nên \(OH \bot AB\)
Mặt khác \(SO \bot AB\) nên \(AB \bot \left( {SOH} \right)\) do đó \(\left( {SOH} \right) \bot \left( {SAB} \right)\) theo giao tuyến \(SH\)
Từ \(O\) kẻ \(OK \bot SH\) suy ra \(OK \bot \left( {SAB} \right) \Rightarrow d\left( {O;\left( {SAB} \right)} \right) = OK\)
Tam giác \(SAB\) là tam giác cân tại \(S\) (vì \(SA = SB)\)
Lại có \(\widehat {SAB} = {60^0}\) nên tam giác \(SAB\) là tam giác đều
Đặt \(SA = SB = AB = 2x;OA = r\)
Trong tam giác vuông \(SOA\) có \(SO = OA.\tan \widehat {SAO} = \frac{r}{{\sqrt 3 }}\)
Trong tam giác vuông \(SOH\) có \(OH = \sqrt {O{A^2} - A{H^2}} = \sqrt {{r^2} - {x^2}} \)
Trong tam giác đều \(SAB\) có \(SH = \frac{{AB\sqrt 3 }}{2} = x\sqrt 3 \)
Ta có \(S{H^2} = S{O^2} + O{H^2} \Leftrightarrow 3{x^2} = \frac{{{r^2}}}{3} + {r^2} - {x^2} \Leftrightarrow r = x\sqrt 3 \)
Trong tam giác vuông \(SOH\) có \(\frac{1}{{O{K^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{H^2}}} \Leftrightarrow \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}} = \frac{1}{{{{\left( {\frac{r}{{\sqrt 3 }}} \right)}^2}}} + \frac{1}{{{r^2} - {x^2}}}\)
\( \Leftrightarrow \frac{3}{{{a^2}}} = \frac{1}{{{x^2}}} + \frac{1}{{2{x^2}}} \Leftrightarrow x = \frac{{a\sqrt 2 }}{2}\)
Vậy độ dài đường sinh của hình nón là \(l = SA = 2x = a\sqrt 2 .\)
Đáp án D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hai số thực dương \(a,b.\) Rút gọn biểu thức \[\] ta thu được \(A = {a^m}.{b^n}.\)
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) vuông tại \(A,AB = a,BC = 2a,\) mặt bên \(ACC'A'\) là hình vuông. Gọi \(M,N,P\) lần lượt là trung điểm của \(AC,CC',A'B'\) và \(H\) là hình chiếu của \(A\) lên \(BC.\) Tính theo \(a\) khoảng cách giữa hai đường thẳng \(MP\) và \(HN.\)
Đường thẳng nào dưới đây là tiệm cận ngang của đồ thị hàm số \(y = \frac{2}{{ - x + 3}}?\)
Viết phương trình tiếp tuyến của đồ thị hàm số \(y = \frac{{2x - 1}}{{x - 2}},\) biết tiếp tuyến có hệ số góc \(k = - 3\)
Cho hình chữ nhật \(ABCD\) có \(AB = 5,BC = 4\). Tính thể tích của khối lăng trụ tạo thành khi cho hình chữ nhật \(ABCD\) quay quanh \(AB.\)
Cho lăng trụ đứng \(ABC.A'B'C'\) có độ dài cạnh bên là \(2a,\) đáy \(ABC\) là tam giác vuông cân tại \(A,\) góc giữa \(AC'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng \({30^0}\) (tham khảo hình vẽ).
Tính theo \(a\) thể tích khối trụ có hai đáy là hai đường tròn ngoại tiếp hai đáy của lăng trụ \(ABC.A'B'C'.\)
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 20;2} \right]\) để hàm số đồng biến trên \(\mathbb{R}.\)
Một nhóm có 6 học sinh gồm 4 nam và 2 nữ. Hỏi có bao nhiêu cách chọn ra 3 học sinh trong đó có đúng 2 học sinh nam?
Cho số thực dương \(a\) khác 1, biểu thức \(D = {\log _{{a^3}}}a\) có giá trị bằng bao nhiêu?
Cắt hình nón \(S\) bởi một mặt phẳng đi qua trục của hình nón ta được một tam giác vuông cân có cạnh huyền bằng \(a\sqrt 2 .\) Tính theo \(a\) thể tích của khối nón đã cho.
Đồ thị hàm số \(y = - {x^4} + {x^2} + 2\) cắt trục \(Oy\) tại điểm nào?
Cho hình chóp \(S.ABC\) có \(SA \bot \left( {ABC} \right),\) hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SBC} \right)\) vuông góc với nhau, \(SB = a\sqrt 3 ,\widehat {BSC} = {45^0},\widehat {ASB} = {30^0}.\) Thể tích khối chóp SABC là \(V.\) Tìm tỉ số \(\frac{{{a^3}}}{V}.\)
Tìm giá trị lớn nhất của hàm số \(y = {x^3} - 3{x^2}\) trên \(\left[ { - 1;2} \right].\)
Cho hình hộp đứng có đáy là hình thoi cạnh Gọi \(G\) là trọng tâm của tam giác góc tạo bởi \(C'G\) và mặt đáy bằng \({30^0}.\) Tính theo \(a\) thể tích khối hộp
Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 2;4} \right]\) và có đồ thị như hình vẽ.
Phương trình \(3f\left( x \right) - 4 = 0\) có bao nhiêu nghiệm thực trên đoạn \(\left[ { - 2;4} \right]?\)