Cho hình lập phương \(ABCD.A'B'C'D'\) có tâm \(O.\) Gọi \(I\) là tâm của hình vuông \(A'B'C'D'\) và \(M\) là điểm thuộc đoạn thẳng \(OI\) sao cho \(MO = 2MI.\) Khi đó côsin góc tạo bởi hai mặt phẳng \(\left( {MC'D'} \right)\) và \(\left( {MAB} \right)\) bằng
A.\(\frac{{17\sqrt {13} }}{{65}}.\)
B.\(\frac{{6\sqrt {85} }}{{85}}.\)
C.\(\frac{{6\sqrt {13} }}{{65}}.\)
D. \(\frac{{7\sqrt {85} }}{{85}}.\)
Gọi \(F,P,Q\) lần lượt là trung điểm \(AB,C'D',BD\)
Do \(\left. \begin{array}{l}C'D' \bot IP\\C'D' \bot OI\end{array} \right\} \Rightarrow CD' \bot \left( {FMP} \right),\left( {FMP} \right) \equiv \left( {OIP} \right)\)
Kẻ \(NM//C'D'(N \in AA'D'D) \Rightarrow NM \bot \left( {FMP} \right) \Rightarrow \left\{ \begin{array}{l}NM \bot MP\\NM \bot MF\end{array} \right.\)
Do đó góc tạo bởi mặt phẳng \(\left( {MC'D'} \right)\) và \(\left( {MAB} \right)\) bằng góc \({180^0} - \widehat {FMP}\)
Đặt độ dài cạnh của hình lập phương ABCD.A’B’C’D’ là a.
Ta có: \(MI = \frac{a}{6},IP = \frac{a}{2},FP = AD' = a\sqrt 2 .\)
Áp dụng pitago cho tam giác vuông \(MIP:MP = \sqrt {M{I^2} + P{I^2}} = \frac{{a\sqrt {10} }}{6}\)
Ta có: \(MQ = \frac{{5a}}{6},QF = \frac{a}{2}\), áp dụng pitago cho tam giác vuông
\(MQF:MF = \sqrt {M{Q^2} + Q{F^2}} = \frac{{a\sqrt {34} }}{6}\)
Áp dụng định lí hàm số côsin cho tam giác \(MFP\)
\(\cos \widehat {FMP} = \frac{{M{F^2} + M{P^2} - F{P^2}}}{{2MF.MP}} = - \frac{{7\sqrt {85} }}{{85}}\)
Vậy côsin góc tạo bởi hai mặt phẳng \(\left( {MC'D'} \right)\) và \(\left( {MAB} \right)\) bằng \(\frac{{7\sqrt {85} }}{{85}}.\)
Đáp án D
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}.\) Biết hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ. Gọi \(S\) là tập hợp các giá trị nguyên \(m \in \left[ { - 2021;2021} \right]\) để hàm số \(g\left( x \right) = f\left( {x + m} \right)\) nghịch biến trên khoảng \(\left( {1;2} \right).\) Hỏi \(S\) có bao nhiêu phần tử?
Cho hàm số \(y = {x^4} - 2m{x^2} + m,\) có đồ thị \(\left( C \right)\) với \(m\) là tham số thực. Gọi \(A\) là điểm thuộc đồ thị \(\left( C \right)\) có hoành độ bằng 1. Tìm \(m\) để tiếp tuyến \(\Delta \) với đồ thị \(\left( C \right)\) tại \(A\) cắt đường tròn tạo thành một dây cung có độ dài nhỏ nhất.
Cho hình chóp \(S.ABC\) có \(AB = AC = 4,BC = 2,SA = 4\sqrt 3 ;\angle SAB = \angle SAC = {30^0}.\) Gọi \({G_1},{G_2},{G_3}\) lần lượt là trọng tâm của các tam giác \(\Delta SBC;\Delta SCA;\Delta SAB\) và \(T\) đối xứng \(S\) qua mặt phẳng \(\left( {ABC} \right).\) Thể tích của khối chóp \(T.{G_1}{G_2}{G_3}\) bằng \(\frac{a}{b}\) với \(a,b \in \mathbb{N}\) và \(\frac{a}{b}\) tối giản. Tính giá trị \(P = 2a - b.\)
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {n^2} + n + 1\) với \(n \in \mathbb{N}*\). Số 21 là số hạng thứ bao nhiêu của dãy số đã cho?
Cho tứ diện đều \(ABCD,M\) là trung điểm của \(BC.\) Khi đó cosin của góc giữa hai đường thẳng nào sau đây có giá trị bằng \(\frac{{\sqrt 3 }}{6}?\)
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác \(ABC\) vuông tại \(B;AB = 2a,BC = a,AA' = 2a\sqrt 3 .\) Thể tích khối lăng trụ \(ABC.A'B'C'\) là
Cho hình chóp \(S.ABC\) có cạnh \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right),\) biết \(AB = AC = a,BC = a\sqrt 3 .\) Tính góc giữa hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAC} \right).\)
Có bao nhiêu giá trị nguyên của tham số \(m\) trong \(\left[ { - 2020;2020} \right]\) để phương trình \(\log \left( {mx} \right) = 2\log \left( {x + 1} \right)\) có nghiệm duy nhất?
Gọi \(M\left( {{x_0};{y_0}} \right)\) là điểm thuộc đồ thị hàm số \(y = {\log _3}x.\) Tìm điều kiện của \({x_0}\) để điểm \(M\) nằm phía trên đường thẳng \(y = 2.\)
Gọi \(\left( S \right)\) là tập hợp các giá trị nguyên \(m\) để đồ thị hàm số \(y = \left| {3{x^4} - 8{x^3} - 6{x^2} + 24x - m} \right|\) có 7 điểm cực trị. Tính tổng các phần tử của \(S.\)
Cho hình trụ có bán kính đáy bằng \(a\) và chiều cao gấp 2 lần đường kính đáy của hình trụ. Tính diện tích xung quanh của hình trụ.
Cho mặt cầu \(S\left( {O;r} \right)\), mặt phẳng \(\left( P \right)\) cách tâm \(O\) một khoảng bằng \(\frac{r}{2}\) cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn. Hãy tính theo \(r\) chu vi của đường tròn là giao tuyến của mặt phẳng \(\left( P \right)\) và mặt cầu \(\left( S \right).\)
Tính tổng tất cả các nghiệm của phương trình \({5^{{{\sin }^2}x}} + {5^{{{\cos }^2}x}} = 2\sqrt 5 \) trên đoạn \(\left[ {0;2\pi } \right].\)