Một hình thang cân \(ABCD\) có đáy nhỏ \(AB = 1,\) đáy lớn \(CD = 3,\) cạnh bên \(BC = AD = \sqrt 2 .\) Cho hình thang \(ABCD\) quay quanh \(AB\) ta được khối nó xoay có thể tích là
A.\(V = \frac{7}{3}\pi \).
B.\(V = 2\pi \).
C.\(V = 3\pi \).
D.\(V = \frac{8}{3}\pi \).
Khi quay hình thang quanh cạnh \(AB\) ta được khối tròn xoay.
Kẻ các đường cao \(AH,BK.\) Khi đó: \(HK = AB = 1 \Rightarrow CK = DK = 1\)
Áp dụng pitago trong các tam giác vuông \(AHC,BKD\) ta được: \(AH = BK = 1\)
Xét khối trụ có đường cao \(CD = 3,\) bán kính \(AH = 1.\) Khi đó thể tích khối trụ:
\({V_{\left( T \right)}} = \pi .A{H^2}.CD = 3\pi \)
Xét khối nón có đường sinh \(AD = \sqrt 2 ,\) bán kính \(AH = 1,\) đường cao \(DH = 1.\) Khi đó thể tích khối nón
\({V_{\left( N \right)}} = \frac{1}{3}.\pi .A{H^2}.DH = \frac{\pi }{3}\)
Thể tích khối tròn xoay:
\(V = {V_{\left( T \right)}} - 2{V_{\left( N \right)}} = \frac{{7\pi }}{3}\)
Đáp án A
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều và \(A'A = A'B = A'C.\) Biết rằng các cạnh bên của lăng trụ tạo với đáy một góc \({60^0}\) và khoảng cách giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng 1. Tính thể tích khối lăng trụ đã cho.
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là
Cho parabol \(\left( P \right):y = - {x^2}\) và đồ thị hàm số \(y = a{x^3} + b{x^2} + cx - 2\) có đồ thị như hình vẽ. Tính giá trị của biểu thức \(P = a - 3b - 5c.\)
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right) = {x^3}{\left( {x - 1} \right)^2}\left( {x + 2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a;BC = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng đáy, cạnh \(SC\) hợp với mặt đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\) theo \(a.\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\) với \(AD = DC = a,AB = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\)cùng vuông góc với đáy. Góc giữa \(SC\) và mặt đáy bằng \({60^0}.\) Tính khoảng cách giữa hai đường thẳng \(AC\) và \(SB.\)
Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?
Cho hình chóp \(S.ABCD\) có đáy ABCD là hình chữ nhật với cạnh \(AD = 2CD.\) Biết hai mặt \(\left( {SAC} \right),\left( {SBD} \right)\) cùng vuông góc với mặt đáy và đoạn \(BD = 6;\) góc giữa \(\left( {SCD} \right)\) và mặt đáy bằng \({60^0}.\) Hai điểm \(M,N\) lần lượt là trung điểm của \(SA,SB.\) Thể tích khối đa diện \(ABCDMN\) bằng
Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 4x} \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {2{x^2} - 12x + m} \right)\) có đúng 5 điểm cực trị?
Cho mặt nón tròn xoay đỉnh \(S\) đáy là đường tròn tâm \(O\) có thiết diện qua trục là một tam giác đều cạnh bằng \(a.{\rm{ }}A,B\) là hai điểm bất kì trên đường tròn \(\left( O \right).\) Thể tích khối chóp \(S.OAB\) đạt giá trị lớn nhất bằng
Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)
Cho hàm số \(y = f\left( x \right)\). Đồ thị của hàm số \(y = f'\left( x \right)\) như hình bên.
Đặt \(h\left( x \right) = f\left( x \right) - \frac{{{x^2}}}{2}.\) Mệnh đề nào dưới đây đúng?
Anh Minh muốn xây dựng một hố ga không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được \(3200c{m^3}\), tỉ số giữa chiều cao và chiều rộng của hố ga bằng 2 . Xác định diện tích đáy của hố ga để khi xây hố tiết kiệm được nguyên vật liệu nhất.
Có bao nhiêu giá trị nguyên \(m\) để hàm số \(y = {x^3} - 3{x^2} - mx + 4\) có hai điểm cực trị thuộc khoảng \(\left( { - 3;3} \right)?\)
Cho tứ diện \(ABCD\) có độ dài cạnh bằng \(a,\left( S \right)\) là mặt tiếp xúc với sáu cạnh của tứ diện \(ABCD.M\) là một điểm thay đổi trên \(\left( S \right).\) Tính tổng \(T = M{A^2} + M{B^2} + M{C^2} + M{D^2}.\)