Chủ nhật, 26/01/2025
IMG-LOGO

Câu hỏi:

18/07/2024 111

Tập nghiệm của bất phương trình \({\log _2}\left( {x\sqrt {{x^2} + 2} + 4 - {x^2}} \right) + 2x + \sqrt {{x^2} + 2} \le 1\) là \(\left( { - \sqrt a ; - \sqrt b } \right].\)

A.\(\frac{{15}}{{16}}\).

B.\(\frac{{12}}{5}\).

C.\(\frac{{16}}{{15}}\).

Đáp án chính xác

D.\(\frac{5}{{12}}\).

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Ta có: \(x\sqrt {{x^2} - 2} - {x^2} = x\left( {\sqrt {{x^2} + 2} - x} \right) = \frac{{2x}}{{\sqrt {{x^2} + 2} + x}}.\)

Ta có: \({\log _2}\left( {x\left( {\sqrt {{x^2} + 2} - x} \right) + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1\)

\( \Leftrightarrow {\log _2}\left( {x\left( {\sqrt {{x^2} + 2} - x} \right) + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1.\)

\( \Leftrightarrow {\log _2}\left( {\frac{{2x}}{{\sqrt {{x^2} + 2} + x}} + 4} \right) + 2x + \sqrt {{x^2} + 2} \le 1 \Leftrightarrow {\log _2}\frac{{2\left( {3x + 2\sqrt {{x^2} + 2} } \right)}}{{\sqrt {{x^2} + 2} + x}} + 2x + \sqrt {{x^2} + 2} \le 1,\left( 1 \right)\)

Ta có \(\sqrt {{x^2} + 2} + x >0,\forall x \in \mathbb{R}.\)

Điều kiện: \(3x + 2\sqrt {{x^2} + 2} >0 \Leftrightarrow 2\sqrt {{x^2} + 2} >- 3x \Leftrightarrow \left[ \begin{array}{l}x \ge 0\\\left\{ \begin{array}{l}x < 0\\4{x^2} + 8 >9{x^2}\end{array} \right.\end{array} \right. \Leftrightarrow x >- \sqrt {\frac{8}{5}} .\left( * \right)\)</>

Với điều kiện (*), ta có

\(\left( 1 \right) \Leftrightarrow {\log _2}\left( {3x + 2\sqrt {{x^2} + 2} } \right) + 3x + 2\sqrt {{x^2} + 2} \le {\log _2}\left( {\sqrt {{x^2} + 2} + x} \right) + \sqrt {{x^2} + 2} + x,\left( 2 \right).\)

Xét hàm số \(f\left( t \right) = {\log _2}t + t\) với \(t >0.\) Có \(f'\left( t \right) = \frac{1}{{t.\ln 2}} + 1 >0,\forall t \in \left( {0; + \infty } \right).\)

Hàm số \(f\left( t \right) = {\log _2}t + t\) đồng biến trên \(\left( {0; + \infty } \right),\left( {3x + 2\sqrt {{x^2} + 2} } \right) \in \left( {0; + \infty } \right)\) và \(\left( {\sqrt {{x^2} + 2} + x} \right) \in \left( {0; + \infty } \right).\)

Nên \(\left( 2 \right) \Leftrightarrow f\left( {3x + 2\sqrt {{x^2} + 2} } \right) \le f\left( {\sqrt {{x^2} + 2} + x} \right)\)

\( \Leftrightarrow 3x + 2\sqrt {{x^2} + 2} \le \sqrt {{x^2} + 2} + x \Leftrightarrow \sqrt {{x^2} + 2} \le - 2x \Leftrightarrow \left\{ \begin{array}{l} - 2x \ge 0\\{x^2} + 2 \le 4{x^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \le 0\\3{x^2} \ge 2\end{array} \right. \Leftrightarrow x \le - \sqrt {\frac{2}{3}} .\)

Kết hợp với ĐK ta có tập nghiệm bất phương trình là \(\left( { - \sqrt {\frac{8}{5}} ; - \sqrt {\frac{2}{3}} } \right)\) hay \(a.b = \frac{{16}}{{15}}.\)

Đáp án C

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều và \(A'A = A'B = A'C.\) Biết rằng các cạnh bên của lăng trụ tạo với đáy một góc \({60^0}\) và khoảng cách giữa đường thẳng \(AA'\) và mặt phẳng \(\left( {BCC'B'} \right)\) bằng 1. Tính thể tích khối lăng trụ đã cho.

Xem đáp án » 08/09/2022 820

Câu 2:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có \(f'\left( x \right) = {\left( {x + 2} \right)^2}{\left( {x - 2} \right)^3}\left( { - x + 5} \right).\) Số điểm cực trị của hàm số \(y = f\left( x \right)\) là

Xem đáp án » 08/09/2022 265

Câu 3:

Cho parabol \(\left( P \right):y = - {x^2}\) và đồ thị hàm số \(y = a{x^3} + b{x^2} + cx - 2\) có đồ thị như hình vẽ. Tính giá trị của biểu thức \(P = a - 3b - 5c.\)

Cho parabol \(\left( P \right):y =  - {x^2}\) và đồ thị hàm số \(y = a{x^3} + b{x^2} + cx - 2\) có đồ thị như hình vẽ. Tính giá trị của biểu thức \(P = a - 3b - 5c.\) (ảnh 1)

Xem đáp án » 08/09/2022 254

Câu 4:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật có \(AB = a;BC = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và mặt phẳng \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng đáy, cạnh \(SC\) hợp với mặt đáy góc \({60^0}.\) Tính thể tích khối chóp \(S.ABCD\) theo \(a.\)

Xem đáp án » 08/09/2022 248

Câu 5:

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R},\) có đạo hàm \(f'\left( x \right) = {x^3}{\left( {x - 1} \right)^2}\left( {x + 2} \right).\) Hỏi hàm số \(y = f\left( x \right)\) có bao nhiêu điểm cực trị?

Xem đáp án » 08/09/2022 241

Câu 6:

Cho biểu thức \(P = \sqrt[4]{{x\sqrt[3]{{{x^2}.\sqrt[3]{x}}}}},x >0.\) Mệnh đề nào dưới đây là đúng?

Xem đáp án » 08/09/2022 234

Câu 7:

Cho hình chóp \(S.ABCD\) có đáy ABCD là hình chữ nhật với cạnh \(AD = 2CD.\) Biết hai mặt \(\left( {SAC} \right),\left( {SBD} \right)\) cùng vuông góc với mặt đáy và đoạn \(BD = 6;\) góc giữa \(\left( {SCD} \right)\) và mặt đáy bằng \({60^0}.\) Hai điểm \(M,N\) lần lượt là trung điểm của \(SA,SB.\) Thể tích khối đa diện \(ABCDMN\) bằng

Xem đáp án » 08/09/2022 232

Câu 8:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(D\) với \(AD = DC = a,AB = 2a.\) Hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\)cùng vuông góc với đáy. Góc giữa \(SC\) và mặt đáy bằng \({60^0}.\) Tính khoảng cách giữa hai đường thẳng \(AC\) và \(SB.\)

Xem đáp án » 08/09/2022 230

Câu 9:

Cho mặt nón tròn xoay đỉnh \(S\) đáy là đường tròn tâm \(O\) có thiết diện qua trục là một tam giác đều cạnh bằng \(a.{\rm{ }}A,B\) là hai điểm bất kì trên đường tròn \(\left( O \right).\) Thể tích khối chóp \(S.OAB\) đạt giá trị lớn nhất bằng

Xem đáp án » 08/09/2022 224

Câu 10:

Cho hàm số \(f\left( x \right)\) có đại hàm \(f'\left( x \right) = {\left( {x + 1} \right)^2}\left( {{x^2} - 4x} \right)\). Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = f\left( {2{x^2} - 12x + m} \right)\) có đúng 5 điểm cực trị?

Xem đáp án » 08/09/2022 217

Câu 11:

Tìm tất cả các giá trị của \(m\) để hàm số \(y = \left( {m - 1} \right){x^3} - 3\left( {m - 1} \right){x^2} + 3x + 2\) đồng biến trên \(\mathbb{R}.\)

Xem đáp án » 08/09/2022 213

Câu 12:

Cho hàm số \(y = f\left( x \right)\). Đồ thị của hàm số \(y = f'\left( x \right)\) như hình bên.

Cho hàm số \(y = f\left( x \right)\). Đồ thị của hàm số \(y = f'\left( x \right)\) như hình bên.Đặt \(h\left( x \right) = f\left( x \right) - \frac{{{x^2}}}{2}.\) Mệnh đề nào dưới đây đúng? (ảnh 1)

Đặt \(h\left( x \right) = f\left( x \right) - \frac{{{x^2}}}{2}.\) Mệnh đề nào dưới đây đúng?

Xem đáp án » 08/09/2022 206

Câu 13:

Anh Minh muốn xây dựng một hố ga không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được \(3200c{m^3}\), tỉ số giữa chiều cao và chiều rộng của hố ga bằng 2 . Xác định diện tích đáy của hố ga để khi xây hố tiết kiệm được nguyên vật liệu nhất.

Xem đáp án » 08/09/2022 202

Câu 14:

Có bao nhiêu giá trị nguyên \(m\) để hàm số \(y = {x^3} - 3{x^2} - mx + 4\) có hai điểm cực trị thuộc khoảng \(\left( { - 3;3} \right)?\)

Xem đáp án » 08/09/2022 200

Câu 15:

Cho tứ diện \(ABCD\) có độ dài cạnh bằng \(a,\left( S \right)\) là mặt tiếp xúc với sáu cạnh của tứ diện \(ABCD.M\) là một điểm thay đổi trên \(\left( S \right).\) Tính tổng \(T = M{A^2} + M{B^2} + M{C^2} + M{D^2}.\)

Xem đáp án » 08/09/2022 194

Câu hỏi mới nhất

Xem thêm »
Xem thêm »