IMG-LOGO

Câu hỏi:

06/07/2024 253

Cho hai hàm số \(y = {2^x}\) và \(y = {\log _2}x\) lần lượt có đồ thị \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right).\) Gọi \(A\left( {{x_A};{y_A}} \right),B\left( {{x_B};{y_B}} \right)\) là hai điểm lần lượt thuộc \(\left( {{C_1}} \right)\) và \(\left( {{C_2}} \right)\) sao cho tam giác \(IAB\) vuông cân tại \(I,\) trong đó \(I\left( { - 1; - 1} \right).\) Giá trị của \(P = \frac{{{x_A} + {y_A}}}{{{x_B} + {y_B}}}\) bằng

A.1

Đáp án chính xác

B.\( - 2.\)

C.3

D.\( - \frac{1}{2}.\)

 Xem lời giải

Trả lời:

verified Giải bởi Vietjack

Đáp án A.

Cho hai hàm số y = 2^x và y = log 2(x) lần lượt có đồ thị (C1) và (C2). Gọi A(xA;yA), B(xB;yB) là hai điểm lần lượt (ảnh 1)

Ta có đồ thị hai hàm số \(y = {2^x}\) và \(y = {\log _2}x\) có đồ thị đối xứng với nhau qua đường thẳng \(d:y = x\) và \(I \in d.\)

Gọi \(M\) là trung điểm của \(AB,\) suy ra: \(\left\{ \begin{array}{l}{x_A} + {x_B} = 2{x_M}\\{y_A} + {y_B} = 2{y_M} \Rightarrow P = \frac{{{x_A} + {x_B}}}{{{y_A} + {y_B}}} = \frac{{{x_M}}}{{{y_M}}}.\end{array} \right.\)

Theo giả thiết tam giác \(IAB\) vuông cân tại \(I\) nên trung điểm \(M\) của \(AB\) thuộc đường thẳng \(d,\) suy ra \({y_M} = {x_M}.\) Vậy \(P = \frac{{{x_M}}}{{{y_M}}} = 1.\)

Câu trả lời này có hữu ích không?

0

Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết

ĐĂNG KÝ VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = a{x^3} + b{x^2} + cx + d\) đồ thị là đường cong trong hình bên. Mệnh đề nào dưới đây đúng?

Cho hàm số y = ax^3 + bx^2 + cx + d đồ thị là đường cong trong hình bên. Mệnh đề nào dưới đây đúng? (ảnh 1)

Xem đáp án » 08/09/2022 509

Câu 2:

Điểm cực đại của đồ thị hàm số \(y = {x^3} - 3x + 1\) là  

Xem đáp án » 08/09/2022 247

Câu 3:

Đạo hàm của hàm số \(y = {2^x}\) là 

Xem đáp án » 08/09/2022 239

Câu 4:

Tập nghiệm của bất phương trình \({\log _5}x \ge 2\) là 

Xem đáp án » 08/09/2022 217

Câu 5:

Tập nghiệm của bất phương trình \({5^{x - 1}} < 25\) là 

Xem đáp án » 08/09/2022 213

Câu 6:

Tập xác định của hàm số \(y = {x^{ - 2}}\) là 

Xem đáp án » 08/09/2022 205

Câu 7:

Cho hàm số \[f(x)\] có \[f(0) = 0\]. Biết rằng \[y = f'(x)\] là hàm số bậc ba và có đồ thị là đường cong trong hình dưới đây, hàm số \[g(x) = f(f(x) - x)\] có bao nhiêu điểm cực trị ?

Cho hàm số f(x) có f(0) = 0. Biết rằng y = f'(x) là hàm số bậc ba và có đồ thị là đường cong trong hình dưới đây, hàm số (ảnh 1)

Xem đáp án » 08/09/2022 195

Câu 8:

Giá trị lớn nhất của hàm số \(f\left( x \right) = \cos x\) bằng

Xem đáp án » 08/09/2022 187

Câu 9:

Trong các hàm số dưới đây, hàm số nào nghịch biến trên khoảng \(\mathbb{R}?\) 

Xem đáp án » 08/09/2022 180

Câu 10:

Diện tích mặt cầu có bán kính \(r = 2\) bằng 

Xem đáp án » 08/09/2022 176

Câu 11:

Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:

Cho hàm số f(x) có bảng biến thiên như sau: Có bao nhiêu giá trị nguyên của tham số m để trên đoạn (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số \(m\) để trên đoạn \(\left[ { - 1;2} \right]\) phương trình \(3f\left( {{x^2} - 2x - 1} \right) = m\) có đúng hai nghiệm thực phân biệt?

Xem đáp án » 08/09/2022 168

Câu 12:

Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:

Cho hàm số y=f(x) có bảng biến thiên như sau: Số nghiệm thực của phương trình 3f(x)+1=0 là (ảnh 1)

Số nghiệm thực của phương trình \(3f\left( x \right) + 1 = 0\) là

Xem đáp án » 08/09/2022 157

Câu 13:

Giá trị nhỏ nhất của hàm số \(f\left( x \right) = {x^3} - 36x\) trên đoạn \(\left[ {2;20} \right]\) bằng 

Xem đáp án » 08/09/2022 156

Câu 14:

Tập xác định của hàm số \(\log x\) là 

Xem đáp án » 08/09/2022 152

Câu 15:

Biết rằng giá trị lớn nhất của hàm số \(y = \frac{{\cos x + m}}{{2 - \cos x}}\) trên đoạn \(\left[ { - \frac{\pi }{3};\frac{\pi }{2}} \right]\) bằng 1. Mệnh đề nào sau đây đúng?

Xem đáp án » 08/09/2022 152

Câu hỏi mới nhất

Xem thêm »
Xem thêm »