Tổng các nghiệm của phương trình \(\log _2^2\left( {3x} \right) + {\log _3}\left( {9x} \right) - 7 = 0\) bằng
A. 84.
B.\(\frac{{28}}{{81}}.\)
C.\(\frac{{244}}{{81}}.\)
D. \(\frac{{244}}{3}.\)
Đáp án C.
Điều kiện \(x >0.\)
Ta có
\(\log _2^2\left( {3x} \right) + {\log _3}\left( {9x} \right) - 7 = 0 \Leftrightarrow {\left( {1 + {{\log }_3}x} \right)^2} + 2 + {\log _3}x - 7 - 0 \Leftrightarrow \log _3^2x + 3{\log _3}x - 4 = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}{\log _3}x = 1\\{\log _3}x = - 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 3\\x = \frac{1}{{81}}\end{array} \right..\)
Vậy tổng các nghiệm bằng \(\frac{{244}}{{81}}.\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho hàm số \(y = {x^3} - 3{x^2} + mx - 1\) với \(m\) là tham số thực. Tìm tất cả các giá trị của tham số \(m\) để hàm số đạt cực trị tại hai điểm \({x_1};{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 6.\)
Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = mx - \frac{1}{{{x^3}}} + 2{x^3}\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) là
Ba bạn tên Học, Sinh, Giỏi mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn \(\left[ {1;19} \right].\) Tính xác suất để ba số viết ra có tổng chia hết cho 3
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Hàm số \(y = f\left( x \right)\) có bao nhiêu cực trị?
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) có đồ thị như hình vẽ.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {\sqrt {4 + 2f\left( {\cos x} \right)} } \right) = m\) có nghiệm \(x \in \left[ {0;\frac{\pi }{2}} \right).\)
Hình chóp \(S.ABCD\) có đáy là hình chữ nhật với \(AB = 3,BC = 4,SC = 5.\) Tam giác \(SAC\) nhọn và nằm trong mặt phẳng vuông góc với \(\left( {ABCD} \right).\) Các mặt \(\left( {SAB} \right)\) và \(\left( {SAC} \right)\) tạo với nhau một góc \(\alpha \) và \(\cos \alpha = \frac{3}{{\sqrt {29} }}.\) Tính thể tích khối chóp \(S.ABCD\)
Cho \(a,b\) là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA \bot \left( {ABCD} \right),SA = a\sqrt 3 .\) Gọi \(M\) là điểm trên đoạn \(SD\) sao cho \(MD = 2MS.\) Khoảng cách giữa hai đường thẳng \(AB\) và \(CM\) bằng
Hàm số \(y = {x^3} - 2x,\) hệ thức liên hệ giữa giá trị cực đại \(\left( {{y_{CD}}} \right)\) và giá trị cực tiểu \(\left( {{y_{CT}}} \right)\) là:
Biết rằng phương trình \({\log _3}\left( {{x^2} - 2020x} \right) = 2021\) có 2 nghiệm \({x_1},{x_2}.\) Tính tổng \({x_1} + {x_2}.\)
Cho hình chóp tam giác \(S.ABC\) có đáy là tam giác \(ABC\) đều cạnh có độ dài là \(a,SA\) vuông góc với mặt phẳng đáy, cạnh bên \(SC\) tạo với mặt đáy một góc \({30^0}.\) Thể tích khối chóp
Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = {x^3}{\left( {x + 1} \right)^2}\left( {x - 2} \right).\) Số điểm cực trị của hàm số đã cho là
Cho hình chóp tứ giác \(S.ABCD\) có đáy là hình vuông cạnh \(AB = a,SA \bot \left( {ABCD} \right)\) và \(SA = a.\) Thể tích của khối chóp \(S.ABCD\) bằng