Cho hai dãy ghế đối diện nhau mỗi dãy có 5 ghế. Xếp ngẫu nhiên 10 học sinh, gồm 5 nam, 5 nữ ngồi vào hai dãy ghế đó sao cho mỗi ghế có đúng một học sinh ngồi. Tính xác suất để mỗi học sinh nam đều ngồi đối diện với một học sinh nữ.
A.\(\frac{1}{{252}}.\)
B.\(\frac{1}{{945}}.\)
C.\(\frac{8}{{63}}.\)
D. \(\frac{4}{{63}}.\)
Đáp án C.
Số phần tử của không gian mẫu là \(n\left( \Omega \right) = 10!\)
Gọi A là biến cố “xếp 5 nam và 5 nữ ngồi đối diện nhau”
Đánh số cặp ghế đối diện nhau là \({C_1},{C_2},{C_3},{C_4},{C_5}\)
Xếp 5 bạn nam vào 5 cặp ghế có 5! cách.
Xếp 5 bạn nữ vào 5 cặp ghế có 5! cách.
Ở mỗi cặp ghế, ta có 2 cách xếp một cặp nam, nữ ngồi đối diện.
\( \Rightarrow \) Số phần tử của \(A\) là \(n\left( A \right) = 5!.5!{.2^5} = 460800.\)
\( \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{460800}}{{10!}} = \frac{8}{{63}}.\)
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Giá trị lớn nhất của hàm số \(f\left( x \right) = {x^3} - 8{x^2} + 16x - 9\) trên đoạn \(\left[ {1;3} \right]\) là
Cho hàm số \(y = f\left( x \right)\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình bên dưới
Hàm số \(g\left( x \right) = f\left( {\left| {3 - x} \right|} \right)\) đồng biến trên các khoảng nào trong các khoảng sau?
Cho tứ diện \(SABC\) có các cạnh \(SA,SB,SC\) đôi một vuông góc với nhau. Biết \(SA = 3a,SB = 4a,SC = 5a.\) Tính theo \(a\) thể tích \(V\) của khối tứ diện \(SABC\).
Cho phương trình: \({\sin ^3}x + 2\sin x + 3 = \left( {2{{\cos }^3}x + m} \right)\sqrt {2{{\cos }^3}x + m - 2} + 2{\cos ^3}x + {\cos ^2}x + m.\) Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình trên có đúng một nghiệm \(x \in \left[ {0;\frac{{2\pi }}{3}} \right)?\)
Cho hàm số \(y = - {x^4} + 2{x^2}\) có đồ thị như hình vẽ.
Tìm tất cả các giá trị thực của \(m\) để phương trình \( - {x^4} + 2{x^2} = m\) có hai nghiệm phân biệt.
Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ { - 4;4} \right]\) và có bảng biến thiên trên đoạn \(\left[ { - 4;4} \right]\) như sau
Phát biểu nào sau đây đúng?
Có tất cả bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{m}{3}{x^3} - 2m{x^2} + \left( {3m + 5} \right)x\) đồng biến trên \(\mathbb{R}.\)
Cho hình chóp đều \(S.ABCD\) có cạnh đáy bằng \(a\sqrt 2 ,\) cạnh bên bằng \(2a.\) Gọi \(\alpha \) là góc tạo bởi hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SCD} \right).\) Tính \(\cos \alpha .\)
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a,SA\) vuông góc với đáy và \(SA = a\sqrt 3 .\) Góc giữa đường thẳng \(SD\) và mặt phẳng \(\left( {ABCD} \right)\) bằng
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Biết giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là \(M,m.\) Giá trị biểu thức \(P = {M^2} + {m^2}\) bằng
Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a\) và hai mặt bên \(\left( {SAB} \right),\left( {SAC} \right)\) cùng vuông góc với mặt phẳng đáy. Tính thể tích của khối chóp \(S.ABC\) biết \(SC = a\sqrt 3 .\)
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ sau. Tìm số nghiệm thực phân biệt của phương trình \(f\left( x \right) = 1.\)
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,SA \bot \left( {ABC} \right),\) góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({60^0}.\) Khoảng cách giữa hai đường thẳng \(AC\) và \(SB\) bằng:
Cho khối chóp có thể tích \(V,\) diện tích đáy là \(B\) và chiều cao \(h.\) Tìm khẳng định đúng?