Cho hình chóp \[S.ABCD\] có đáy là hình vuông và có mặt phẳng \[(SAB)\] vuông góc với mặt phẳng đáy, tam giác \[SAB\] là tam giác đều. Gọi I và E lần lượt là trung điểm của cạnh ABvà BC; Hlà hình chiếu vuông góc của Ilên cạnh SC. Khẳng định nào sau đây sai?
A.Mặt phẳng (SIC) vuông góc với mặt phẳng (SDE).
B.Mặt phẳng (SAI) vuông góc với mặt phẳng (SBC).
C.Góc giữa hai mặt phẳng (SAB) và (SIC) là góc BIC.
Đáp án D.
+ \(\left\{ \begin{array}{l}DE \bot IC\\DE \bot SI\end{array} \right. \Rightarrow DE \bot \left( {SIC} \right) \Rightarrow \left( {SIC} \right) \bot \left( {SDE} \right).\) Suy ra A đúng/
+ \(\left\{ \begin{array}{l}BC \bot AI\\BC \bot AB\end{array} \right. \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAI} \right).\) Suy ra B đúng
+ \(DE \bot \left( {SCI} \right);BC \bot \left( {SAI} \right)\) nên \(\left( {\left( {SIC} \right),\left( {SAB} \right)} \right) = \left( {BC,DE} \right) = \angle DEC = \angle BIC.\)
Suy ra D sai.
Vậy D sai.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Call S is a compo all the value of the value [-10; 10] of m to function \ [y = {x ^ 3} - 3 (2m + 1) {x ^ 2} + (12m + 5 ) x + 2 \] đồng biến trên khoảng \ [(2; + \ infty) \]. S bằng số phần tử
Cho hàm số \(y = \frac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ
Khẳng định nào sau đây đúng?
Gọi \(S\) là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{34}}{{\sqrt {{{\left( {{x^3} - 3x + 2m} \right)}^2}} + 1}}\) trên đoạn \(\left[ {0;3} \right]\) bằng 2. Tổng tất cả các phần tử của \(S\) bằng
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số \(y = 3{\cos ^4}x + \frac{3}{2}{\sin ^2}x + m\cos x - \frac{5}{2}\) đồng biến trên \(\left( {\frac{3}{2};\frac{{2\pi }}{3}} \right].\)
Cho tứ diện \(O.ABC\) có \(OA,OB,OC\) đôi một vuông góc và \(OA = 3a,OB = OC = 2a.\) Thể tích \(V\) khối tứ diện đó là
Xét các số thực dương \(a\) và \(b\) thỏa mãn \({\log _5}\left( {{5^a}{{.25}^b}} \right) = {5^{{{\log }_5}a + {{\log }_5}b + 1}}.\) Mệnh đề nào dưới đây đúng?
Một đề thi trắc nghiệm gồm 50 câu, mỗi câu có 4 phương án trả lời trong đó chỉ có 1 phương án đúng, mỗi câu trả lời đúng được 0,2 điểm. Một thí sinh làm bài bằng cách chọn ngẫu nhiên 1 trong 4 phương án ở mỗi câu. Tính xác suất để thí sinh đó được 6 điểm.
Thiết diện qua trục của một hình nón là tam giác đều cạnh \(2a.\) Đường cao của hình nón là
Khối chóp tứ giác \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(6a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy có thể tích bằng
Có bao nhiêu giá trị nguyên của tham số \(m\) để đồ thị hàm số \(y = {x^3} - 8{x^2} + \left( {{m^2} + 5} \right)x - 2{m^2} + 14\) có hai điểm cực trị nằm về hai phía trục \(Ox?\)
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}.\) Biết rằng hàm số \(y = f'\left( x \right)\) có đồ thị như hình vẽ
Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^2} - 2x} \right) - \left( {\frac{{{x^4}}}{2} - 2{x^3} + {x^2} + 2x + 1} \right)\) là
Cho hàm số \[y = f(x)\] có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Cho hàm số \(y = f\left( x \right) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình vẽ. Tìm tập hợp tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( {{{\sin }^2}x} \right) = m\) có nghiệm.
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác với \(AB = a,AC = 2a\) và \(\widehat {BAC} = {120^0},AA' = 2a\sqrt 5 .\) Thể tích \(V\) của khối lăng trụ đã cho là