Cho mặt cầu (S) có bán kính R. Hình nón (N) thay đổi có đỉnh và đường kính đáy nằm trên mặt cầu (S). Thể tích lớn nhất của khối nón (N) là:
A.
B.
C.
D.
Phương pháp:
- Gọi h là chiều cao của hình nón, r là bán kính đường tròn đáy của hình nón. Sử dụng định lí Pytago biểu diễn r theo h, R.
- Thể tích khối nón có chiều cao h bán kính đáy r là
- Sử dụng phương pháp hàm số để tìm GTLN của thể tích.
Cách giải:
Gọi h là chiều cao của hình nón. Để thể tích khối nón là lớn nhất thì hiển nhiên h > R.
Gọi r là bán kính đường tròn đáy của hình nón.
Ta có
Áp dụng định lí Pytago ta có .
Thể tích khối nón là
Xét hàm số với h > R ta có
Chọn D.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình Tính diện tích mặt cầu (S)
Biết hàm số f(x) - f(2x) có đạo hàm bằng 20 tại x = 1 và đạo hàm bằng 1001 tại x = 2. Tính đạo hàm của hàm số
f(x) - f(4x) tại x = 1.
Cho hàm số y = f(x) có bảng biến thiên như sau:
Số nghiệm thực của phương trình là
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa hai mặt phẳng (SCD) và (ABCD) bằng và . Khoảng cách từ điểm A đến mặt phẳng (SCD) bằng:
Một khối trụ có diện tích xung quanh bằng Tính thể tích của khối trụ biết khoảng cách giữa hai đáy bằng 10.
Cho tập hợp Từ tập hợp A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao cho các số này lẻ và không chia hết cho 5?