Điều tra chiều cao của 10 hs lớp 10A cho kết quả như sau: 154; 160; 155; 162; 165; 162; 155; 160; 165; 162 (đơn vị cm). Khoảng tứ phân vị là
A. 5;
B. 6;
C. 7;
D. 8.
Đáp án đúng là: C
Ta sắp xếp số liệu theo thứ tự không giảm như sau: 154; 155; 155; 160; 160; 162; 162; 162; 165; 165.
Vì n = 10 là số chẵn nên Q2 là trung bình cộng của hai số chính giữa
Q2 = (160 + 162) : 2 = 161
Ta tìm Q1 là trung vị nửa số liệu bên trái Q2 là 154; 155; 155; 160; 160 gồm 5 giá trị và tìm được Q1 = 155
Ta tìm Q3 là trung vị nửa số liệu bên phải Q2 là 162; 162; 162; 165; 165 gồm 5 giá trị và tìm được Q3 = 162
Vậy khoảng tứ phân vị ∆Q = Q3 – Q1 = 162 – 155 = 7.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Điểm kiểm tra thường xuyên của 11 học sinh lớp 10 cho bởi bảng sau:
Học sinh | A | B | C | D | E | F | G | H | I | K | M |
Điểm | 7 | 8 | 9 | 10 | 9 | 8 | 3 | 6 | 7 | 8 | 9 |
Giá trị bất thường của mẫu số liệu trên là
Sản phẩm bình quân trong một giờ của công nhân trong 10 ngày liên tiếp của công ty A được thống kê bởi dãy số liệu: 30; 40; 32; 40; 50; 45; 42; 42; 45; 50. Tìm tứ phân vị của mẫu số liệu
Mẫu số liệu sau đây cho biết sĩ số của 12 lớp ở một trường trung học như sau: 45; 43; 46; 41; 40; 40; 42; 41; 45; 45; 43; 42. Khoảng tứ phân vị của mẫu số liệu là
Cho mẫu số liệu 5; 6; 7; 8; 9. Phương sai của mẫu số liệu trên là
Cho mẫu số liệu thống kê: 5; 2; 1; 6; 7; 5; 4; 5; 9. Mốt của mẫu số liệu trên bằng
Thực hiện đo chiều cao của 4 ngôi nhà, kết quả đo đạc nào trong các kết quả sau chính xác nhất
Một cửa hàng dép da đã thống kê cỡ dép của một số khách hàng nam cho kết quả như sau: 39; 38; 39; 40; 41; 41; 43; 37; 38; 40; 43; 41; 42; 41; 42. Tìm trung vị của mẫu số liệu trên
Số đo chiều cao (đơn vị cm) của học sinh trong tổ 1 lớp 10A cho kết quả như sau: 156; 159; 162; 165; 163; 159; 155; 160. Chiều cao trung bình của học sinh tổ 1 là:
Số quy tròn của số gần đúng a = 4,1356 biết ā = 4,1356 ± 0,001 là
C; 4,15;
Số học sinh trong 4 tổ của lớp 10A là 9; 10; 8; 9. Độ lệch chuẩn của mẫu số liệu là
Giá của một loại quần áo (đơn vị nghìn đồng) cho bởi số liệu như sau: 350; 300; 350; 400; 450; 400; 450; 350; 350; 400. Tứ phân vị của số liệu là
Cho dãy số liệu thống kê 4; 5; 4; 3; 7; 6; 9; 6; 7; 8; 9. Khoảng biến thiên của dãy số liệu là
Điểm kiểm tra học kỳ của 10 học sinh được thống kê như sau: 6; 7; 7; 5; 8; 6; 9; 9; 8; 6. Khoảng biến thiên của dãy số là
Doanh thu của một cửa hang tạp hoá trong 5 ngày được cho bởi số liệu: 2,3; 2,5; 3,1; 2,0; 2,3 (đơn vị: triệu đồng). Khoảng biến thiên của mẫu số liệu là
Cho biết \(\sqrt 2 \) = 1,4142135.... Viết gần đúng số \(\sqrt 2 \) theo quy tắc làm tròn đến hàng phần nghìn, sai số tuyệt đối ước lượng được là