Tam thức f(x) = x2 – 2x – 3 nhận giá trị dương khi và chỉ khi
A. x ∈ (– ∞; – 3) \( \cup \) (– 1; + ∞);
B. x ∈ (– ∞; – 1) \( \cup \) (3; + ∞);
C. x ∈ (– ∞; – 2) \( \cup \) (6; + ∞);
D. x ∈ (1; 3).
Đáp án đúng là: B
Xét f(x) = x2 – 2x – 3 có ∆’ = (–1)2 – 1(–3) = 4 > 0 và a = 1 > 0 nên hàm số có hai nghiệm phân biệt x1 = –1 và x2 = 3.
Khi đó, ta có bảng xét dấu:
Suy ra f(x) > 0 với x ∈ (– ∞; – 1) \( \cup \) (3; + ∞); f(x) < 0 khi x ∈ (– 1; 3)
Vậy f(x) nhận giá trị dương khi x ∈ (– ∞; – 1) \( \cup \) (3; + ∞).
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho parabol (P): y = ax2 + bx + c có đồ thị như hình bên. Phương trình của parabol này là :
Phương trình x2 – (m – 1)x + m2 – 3m + 2 = 0 có hai nghiệm trái dấu nhau khi và chỉ khi
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) < 0 với mọi x ∈ ℝ.
Tập xác định của hàm số \[y = \frac{{x - 1}}{{{x^2} - x + 3}}\] là
Cho f(x) = x2 – 1. Tìm khẳng định sai trong các khẳng định sau đây
Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng
Bất phương trình: \[\left( {{x^2} - 3x - 4} \right).\sqrt {{x^2} - 5} < 0\] có bao nhiêu nghiệm nguyên dương?
Nghiệm của phương trình \[\sqrt {x - 2} + \sqrt {x + 3} = 5\] là
Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b:
Bài tập cuối chương VI