Khái niệm nào sau đây định nghĩa về hypebol?
A. Cho điểm F cố định và một đường thẳng \(\Delta \) cố định không đi qua F. Hypebol (H) là tập hợp các điểm M sao cho khoảng cách từ M đến F bằng khoảng cách từ M đến \(\Delta \);
B. Cho \({F_1},{\rm{ }}{F_2}\) cố định với \({F_1}{F_2} = \) 2c (c > 0). Hypebol (H) là tập hợp điểm M sao cho \(\left| {M{F_1} - M{F_2}} \right| = 2a\) với a là một số không đổi và a < c;
C. Cho \({F_1},{\rm{ }}{F_2}\) cố định với \({F_1}{F_2} = \) 2c (c > 0) và một độ dài 2a không đổi (a > c). Hypebol (H) là tập hợp các điểm M sao cho \(M \in \left( P \right)\)\( \Leftrightarrow M{F_1} + M{F_2} = 2a\);
D. Cả ba định nghĩa trên đều không đúng định nghĩa của Hypebol .
Đáp án đúng là: B
Cho \({F_1},{\rm{ }}{F_2}\) cố định với \({F_1}{F_2} = \) 2c (c > 0). Hypebol (H) là tập hợp điểm M sao cho \(\left| {M{F_1} - M{F_2}} \right| = 2a\) với a là một số không đổi và a < c.
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x - 2y - 6 = 0 và \[{d_2}\]: 6x - 2y - 8 = 0
Đường thẳng nào là đường chuẩn của parabol \({y^2} = \frac{3}{2}x\)
Elip \(\left( E \right):\frac{{{x^2}}}{{16}} + {y^2} = 4\) có tổng độ dài trục lớn và trục bé bằng:
Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; -1) và B(1 ; 5) là:
Khoảng cách từ điểm M(-1; 1) đến đường thẳng \[\Delta \]: 3x – 4y – 3 = 0 bằng:
Viết phương trình tham số của đường thẳng d đi qua điểm M(6; -10) và vuông góc với trục Oy?
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta \): ax + by + c = 0. Khoảng cách từ điểm M đến \(\Delta \) được tính bằng công thức:
Góc nào tạo bởi giữa hai đường thẳng: \({d_1}:x + \sqrt 3 y = 0\) và \({d_2}\): x + 10 = 0 .
Gọi I(a; b) là tâm của đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 5\]. Tính S = 2a + b:
Cho đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\]. Viết phương trình tiếp tuyến d của (C) tại điểm A (3; -4).
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
Đường thẳng d đi qua gốc tọa độ O và song song với đường thẳng – x + 2y + 3 = 0 có phương trình tham số là:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 1 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
Bài tập cuối chương VII