A. \[{\left( {x + 1} \right)^2} + {\left( {y - 5} \right)^2} = 26;\]
B. \[{\left( {x + 1} \right)^2} + {\left( {y - 5} \right)^2} = \sqrt {26} ;\]
C. \[{\left( {x - 1} \right)^2} + {\left( {y + 5} \right)^2} = 26;\]
D. \[{\left( {x - 1} \right)^2} + {\left( {y + 5} \right)^2} = \sqrt {26} .\]
Đáp án đúng là: C
Ta có: Bán kính của đường tròn R = OI = \[\sqrt {{{(1 - 0)}^2} + {{( - 5 - 0)}^2}} = \sqrt {26} \]
Phương trình đường tròn\[\left( C \right):\left\{ \begin{array}{l}I\left( {1; - 5} \right)\\R = OI = \sqrt {26} \end{array} \right.\] là: \[{\left( {x - 1} \right)^2} + {\left( {y + 5} \right)^2} = 26\]
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x - 2y - 6 = 0 và \[{d_2}\]: 6x - 2y - 8 = 0
Đường thẳng nào là đường chuẩn của parabol \({y^2} = \frac{3}{2}x\)
Elip \(\left( E \right):\frac{{{x^2}}}{{16}} + {y^2} = 4\) có tổng độ dài trục lớn và trục bé bằng:
Viết phương trình tham số của đường thẳng d đi qua điểm M(6; -10) và vuông góc với trục Oy?
Khoảng cách từ điểm M(-1; 1) đến đường thẳng \[\Delta \]: 3x – 4y – 3 = 0 bằng:
Phương trình tổng quát của đường thẳng đi qua hai điểm A(3 ; -1) và B(1 ; 5) là:
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta \): ax + by + c = 0. Khoảng cách từ điểm M đến \(\Delta \) được tính bằng công thức:
Gọi I(a; b) là tâm của đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 5\]. Tính S = 2a + b:
Góc nào tạo bởi giữa hai đường thẳng: \({d_1}:x + \sqrt 3 y = 0\) và \({d_2}\): x + 10 = 0 .
Cho đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\]. Viết phương trình tiếp tuyến d của (C) tại điểm A (3; -4).
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
Đường thẳng d đi qua gốc tọa độ O và song song với đường thẳng – x + 2y + 3 = 0 có phương trình tham số là:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 1 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
Bài tập cuối chương VII