Cho tam giác ABC không tù, thỏa mãn điều kiện
cos2A + 2√2cosB + 2√2cosC = 3
Tính các góc của tam giác ABC
Gói VIP thi online tại VietJack (chỉ 400k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết
Cho 0ο < α < 90ο
a) Có giá trị nào của α sao cho tanα < sinα hay không?
b) Chứng minh rằng sinα + cosα > 1.
Trong các đẳng thức sau, đẳng thức nào đúng, đẳng thức nào sai?
a) sin(x + π/2) = cosx;
b) cos(x + π/2) = sinx;
c) sin(x - π) = sinx;
d) cos(x - π) = cosx
Chứng minh rằng
a) sin(270ο - α) = -cosα;
b) cos(270ο - α) = -sinα;
c) sin(270ο + α) = -cosα;
d) cos(270ο + α) = sinα.
Không dùng bảng số và máy tính, hãy xác định dấu của sinα và cosα với
a) α = 135ο b) α = 210ο
c) α = 334ο d) α = 1280ο
e) α = -235ο e) α = -1876ο
Tính các giá trị lượng giác của góc α, biết
a) cosα = 2sinα khi 0 < α < π/2
b) cotα = 4tanα khi π/2 < α < π.
Hãy xác định dấu của các tích (không dùng bảng số và máy tính)
a) sin 110ο cos 130ο cos 30ο cot 320ο
b) sin(-50ο) tan 170ο cos(-91ο) sin 530ο.
Chứng minh rằng các biểu thức sau là những số không phụ thuộc α
a) A = 2(sin6α + cos6α) - 3(sin4α + cos4α)
b) B = 4(sin4α + sin4α) - cos4α
c) C = 8(cos8α - sin8α) - cos6α - 7cos2α
Hãy viết theo thứ tự tăng dần các giá trị sau (không dùng bảng số và máy tính)
a) sin 40ο, sin 90ο, sin 220ο, sin 10ο;
b) cos 15ο, cos 0ο, cos 90ο, cos 138ο.
Trên đường tròn lượng giác cho điểm M xác định bởi số đo AM = 80ο trong đó A(1; 0). Gọi M' là điểm đối xứng với M qua đường phân giác của góc phần tư thứ II. Số đo của cung lượng giác AM' là: